Menu

Blog

Archive for the ‘chemistry’ category: Page 99

Sep 15, 2023

What’s That Smell? An AI Nose Knows

Posted by in categories: chemistry, robotics/AI

12:17 minutes.

Predicting smells is more difficult. While we know that many sulfur-containing molecules tend to fall somewhere in the ‘rotten egg’ or ‘skunky’ category, predicting other aromas based solely on a chemical structure is hard. Molecules with a similar chemical structure may smell quite different—while two molecules with very different chemical structures can smell the same.

Sep 15, 2023

Scientists uncover mystery of important material for semiconductors at the surface

Posted by in categories: chemistry, computing

A team of scientists with the Department of Energy’s Oak Ridge National Laboratory has investigated the behavior of hafnium oxide, or hafnia, because of its potential for use in novel semiconductor applications.

Materials such as hafnia exhibit , which means that they are capable of extended even when power is disconnected and that they might be used in the development of new, so-called nonvolatile memory technologies. Innovative nonvolatile memory applications will pave the way for the creation of bigger and faster computer systems by alleviating the heat generated from the continual transfer of data to short-term memory.

The scientists explored whether the atmosphere plays a role in hafnia’s ability to change its internal electric charge arrangement when an external electric field is applied. The goal was to explain the range of unusual phenomena that have been obtained in hafnia research. The team’s findings were recently published in Nature Materials. The title of the paper is “Ferroelectricity in hafnia controlled via surface electrochemical state.”

Sep 14, 2023

12 Exotic Bacteria Found to Passively Collect Rare Earth Elements From Wastewater

Posted by in categories: chemistry, mobile phones, sustainability

Scientists have shown that the biomass of 12 previously unstudied strains of cyanobacteria from around the globe is efficient at the biosorption of the rare earth elements lanthanum, cerium, neodymium, and terbium from aqueous solutions. This allows these rare elements, for which demand is steadily growing, to be collected from wastewater from mining, metallurgy, and the recycling of e-waste, and reused.

Rare earth elements (REEs) are a group of 17 chemically similar metals, which got their name because they typically occur at low concentrations (between 0.5 and 67 parts per million) within the Earth’s crust. Because they are indispensable in modern technology such as light emitting diodes, mobile phones, electromotors, wind turbines, hard disks, cameras, magnets, and low-energy lightbulbs, the demand for them has increased steadily over the past few decades, and is predicted to rise further by 2030.

Sep 13, 2023

AI Cracks the Code on Odor Perception

Posted by in categories: chemistry, robotics/AI

Researchers unravel the mysteries of smell using machine learning. Their AI model has achieved human-level skill in describing how certain chemicals will smell, closing a critical gap in the scientific understanding of olfaction.

Beyond advancing our comprehension of smell, this technology could lead to breakthroughs in the fragrance and flavor industries, and even help create new functional scents like mosquito repellents. The study validates a first-of-its-kind data-driven map of human olfaction, which correlates chemical structure to odor perception.


Summary: Researchers unravel the mysteries of smell using machine learning. Their AI model has achieved human-level skill in describing how certain chemicals will smell, closing a critical gap in the scientific understanding of olfaction.

Sep 13, 2023

Defying Conventional Wisdom — Scientists Push the Boundaries of Photonics

Posted by in categories: chemistry, computing, quantum physics

Defying conventional wisdom, scientists have discovered a novel coupling mechanism involving leaky mode, previously considered unsuitable for high-density integration in photonic circuits.

This surprising discovery paves the way for dense photonic integration, transforming the potential and scalability of photonic chips in areas such as optical computing quantum communication, light detection and ranging (LiDAR), optical metrology, and biochemical sensing.

In a recent Light Science & Application publication, Sangsik Kim, associate professor of electrical engineering at Korea Advanced Institute of Science and Technology (KAIST), and his students at Texas Tech University demonstrated that an anisotropic leaky wave can achieve zero crosstalk between closely spaced identical waveguides using subwavelength grating (SWG) metamaterials.

Sep 13, 2023

Hybrid nanoparticles shine new light on targeting cancer cells

Posted by in categories: biotech/medical, chemistry, nanotechnology

Scientists at the Indian Institute of Science (IISc) have developed a new approach to potentially detect and kill cancer cells, especially those that form a solid tumor mass. They have created hybrid nanoparticles made of gold and copper sulfide that can kill cancer cells using heat and enable their detection using sound waves, according to a study published in ACS Applied Nano Materials.

Early detection and treatment are key in the battle against cancer. Copper sulfide nanoparticles have previously received attention for their application in , while , which can be chemically modified to target cancer cells, have shown anticancer effects. In the current study, the IISc team decided to combine these two into hybrid nanoparticles.

“These particles have photothermal, , and photoacoustic properties,” says Jaya Prakash, Assistant Professor at the Department of Instrumentation and Applied Physics (IAP), IISc, and one of the corresponding authors of the paper. Ph.D. students Madhavi Tripathi and Swathi Padmanabhan are co-first authors.

Sep 12, 2023

“Hidden Mysteries” of Ancient Egyptian Tomb Paintings Revealed

Posted by in categories: chemistry, media & arts

Archaeological secrets from thousands of years ago in northeast Africa have been unearthed thanks to modern-day scientific innovations. A process known as chemical imaging recently revealed “hidden mysteries” about ancient Egyptian paintings located in tomb chapels close to the Nile River — and portable devices made it possible to analyze the 3,000-year-old art on-site in its original locations.

As announced in the peer-reviewed publication PLOS One on July 12, the portable devices enabled Philippe Martinez of France’s Sorbonne University, along with a team of international colleagues, to visit the tombs and analyze the paintings dating back to the Ramesside Period, which lasted from approximately 1,295 B.C. to 1,070 B.C. They were located in tomb chapels in the Theban Necropolis, located just west of the Nile, per a press release.

Thanks to the chemical imaging technology, the team gathered detailed information on the paintings, including paint composition and layering, and alterations that had been made to the pictures over time.

Sep 10, 2023

Nanoparticles Stopping Metastases in Its Tracks

Posted by in categories: biotech/medical, chemistry, nanotechnology

An international research team headed by Johannes Karges, PhD, of the faculty of chemistry and biochemistry at Ruhr University Bochum, Germany, has developed nanoparticles that accumulate in cancer cells and eliminate them after being photoactivated. The research team also labeled them in such a way that immune cells learn to eliminate similar cells throughout the body which could even mean undetected metastases can be treated.

The researchers presented their findings in the journal Nature Communications in an article titled, “Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway.”

“Tumor metastases are considered the leading cause of cancer-associated deaths,” the researchers wrote. “While clinically applied drugs have demonstrated to efficiently remove the primary tumor, metastases remain poorly accessible. To overcome this limitation, herein, the development of a theranostic nanomaterial by incorporating a chromophore for imaging and a photosensitizer for treatment of metastatic tumor sites is presented. The mechanism of action reveals that the nanoparticles are able to intervene by local generation of cellular damage through photodynamic therapy as well as by systemic induction of an immune response by immunotherapy upon inhibition of the mTOR signaling pathway which is of crucial importance for tumor onset, progression, and metastatic spreading.”

Sep 10, 2023

This Self-Destructing Robot Vanishes Into a Puddle of Goo

Posted by in categories: chemistry, robotics/AI

In an effort to create robots capable of controlling their own life-cycles, researchers have developed squishy little devices that can melt themselves into a puddle of goo.

“We have mimicked death in a life cycle where the robot could end itself,” Seoul National University engineer Min-Ha Oh told Peter Grad at Tech Xplore.

This ‘death’ is triggered by internal ultraviolet LEDs that destabilize the chemical composition of the robot. This process takes about an hour though, so it’s likely we have a few decades before we’ll see robots being employed as the kinds of vanishing spies proposed by the researchers.

Sep 10, 2023

MIT student uses AI to design buildings with less concrete

Posted by in categories: chemistry, robotics/AI

Concrete is responsible for 8 percent of the world’s carbon emissions.

In construction, concrete emissions refer to the greenhouse gas emissions associated with the production and use of concrete, one of the most widely used construction materials globally. Due to energy-intensive cement production processes and chemical reactions that take place during concrete curing, the concrete industry is a substantial source of carbon dioxide (CO2) emissions, responsible for an estimated 8 percent of the world’s emissions.

Cement, which is a byproduct of heating limestone (calcium carbonate) and other minerals to high temperatures in a kiln, is the main component of concrete. In order to produce the… More.

Continue reading “MIT student uses AI to design buildings with less concrete” »