Menu

Blog

Archive for the ‘chemistry’ category: Page 208

Apr 4, 2022

Revolutionary DNA Nanotechnology Speeds Up Development of Vaccines

Posted by in categories: biotech/medical, chemistry, energy, nanotechnology

Revolutionary tool will meet future pandemics with accelerated response.

A new tool speeds up development of vaccines and other pharmaceutical products by more than one million times while minimizing costs.

In search of pharmaceutical agents such as new vaccines, industry will routinely scan thousands of related candidate molecules. A novel technique allows this to take place on the nano scale, minimizing use of materials and energy. The work is published in the prestigious journal Nature Chemistry.

Apr 2, 2022

Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic

Posted by in categories: biotech/medical, chemistry

Current DNA computation techniques are slow in generating chemical outputs in response to chemical inputs and rely heavily on fluorescence readouts. Here, the authors introduce a new paradigm for DNA computation where the chemical input is processed and transduced into a mechanical output in the form of macroscopic locomotion using dynamic DNA-based motors.

Mar 31, 2022

Hyper-CEST NMR technique reveals missing structure of a novel container molecule

Posted by in categories: biotech/medical, chemistry

Using the Hyper-CEST NMR technique, the team led by Leif Schröder from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and the Deutsches Krebsforschungszentrum (DKFZ) has managed to reveal two previously little researched variants of a type of transport container from the class of metal–organic polyhedra (MOPs). The researchers want to use this knowledge to develop a novel type of contrast agent in MR (magnetic resonance) imaging.

The concept of a modular construction system proves useful in many applications for assembling complex structures for specific functions from individual, repeated sub-units. In chemistry, the principle can be used to construct a self-assembling network from smaller molecular units that acts as a transport container of a defined size. For example, several can be linked with . These MOPs (metal–organic polyhedra) are used, for instance, to capture or to pave the way for more effective chemotherapeutic agents by loading them with certain drugs, which they then release in the tumor. Several aspects of the behavior of these structures have not yet been adequately explored. This is partly because there are not always appropriate techniques available to observe the loading and unloading of these MOPs at the —often, no differences can be measured between the empty and loaded variants for either the container or its contents.

In cooperation with a team from the University of Oulu in Finland, Leif Schröder’s research group has now investigated MOPs that spontaneously assemble in solution from iron ions and an organic compound to form tetrahedra. In the process, the organic struts can be attached differently to the iron “nodes.” Essentially, this influences the properties of MOPs, such as their capacity to kill tumor cells. In the case of the MOP under study, however, it was previously thought that only one of the three theoretically predicted variants existed. The other two variants were considered too unstable because no were able to detect them. Using a new method of (hyper-CEST NMR), Schröder’s team member Jabadurai Jayapaul has now succeeded in demonstrating that these previously unknown variants do exist.

Mar 31, 2022

Scientists Achieve Record Energy Efficiency for Thin Solar Panels

Posted by in categories: chemistry, solar power, sustainability

Scientists from the University of Surrey and Imperial College London have achieved an increase in energy absorption in ultra-thin solar panels by 25%, a record for panels of this size.

The team, which collaborated with AMOLF in Amsterdam, used solar panels just one micrometer thick with a disordered honeycomb layer on top of the silicon panel. The biophilic design draws inspiration from butterfly wings and bird eyes to absorb sunlight from every possible angle, making the panels more efficient.

The research led to a 25% increase in levels of energy absorption by the panels, making these solar panels more efficient than other one-micrometer-thick panels. They published their findings in the American Chemical Society’s journal, Photonics.

Mar 31, 2022

Plasmonic catalyst smashes record for reducing vital chemical feedstock

Posted by in category: chemistry

Chalcogenide catalyses reduction of nitroaromatics used in everything from paints, plastics and pharmaceuticals.

Mar 31, 2022

Researchers’ novel tool to help develop safer pesticides

Posted by in categories: biotech/medical, chemistry, computing, economics, ethics, health

The majority of commercial chemicals that enter the market in the United States every year have insufficient health and safety data. For pesticides, the U.S. Environmental Protection Agency uses a variety of techniques to fill data gaps in order to evaluate chemical hazard, exposure and risk. Nonetheless, public concern over the potential threat that these chemicals pose has grown in recent years, along with the realization that traditional animal-testing methods are not pragmatic by means of speed, economics or ethics. Now, researchers at the George Washington University have developed a new computational approach to rapidly screen pesticides for safety, performance and how long they will endure in the environment. Moreover, and most importantly, the new approach will aid in the design of next-generation molecules to develop safer pesticides.

“In many ways, our tool mimics computational drug discovery, in which vast libraries of chemical compounds are screened for their efficacy and then tweaked to make them even more potent against specific therapeutic targets,” Jakub Kostal, an assistant professor of chemistry at GW and principal investigator on the project, said. “Similarly, we use our systems-based approach to modify to make them less toxic and more degradable, while, at the same time, making sure they retain good performance. It’s a powerful tool for both industry and that can help design new, safer analogs of existing commercial agrochemicals, and so protect human life, the environment and industry’s bottom line.”

Using their model, the team analyzed 700 pesticides from the EPA’s pesticide registry. The model considered a pesticide’s likely persistence or degradation in the environment over time, its safety, and how well it performed at killing, repelling or controlling the target problem.

Mar 29, 2022

Alien Life: What Would Constitute “Smoking Gun” Evidence?

Posted by in categories: alien life, chemistry

Multiple lines of evidence — physical, chemical, and biological — must converge for scientists to conclude that alien life has been found. This article was posted on Big Think. Check it out here: https://bigthink.com/hard-science/alien-life-smoking-gun-evidence

Mar 27, 2022

Cloud seeding might not be as favorable as drought-troubled states expect

Posted by in categories: chemistry, geoengineering

Mar 27, 2022

Italian scientists hacked pizza physics to make dough without yeast

Posted by in categories: chemistry, cybercrime/malcode, food, physics

Ernesto Di Maio is severely allergic to the yeast in leavened foods. “I have to go somewhere and hide because I will be fully covered with bumps and bubbles on the whole body,” he says. “It’s really brutal.”

Di Maio is a materials scientist at the University of Naples Federico II where he studies the formation of bubbles in polymers like polyurethane. He’s had to swear off bread and pizza, which can make outings in Italy a touch awkward. “It’s quite hard in Naples not to eat pizza,” he explains. “People would say, ‘Don’t you like pizza? Why are you having pasta? That’s strange.’”

So Di Maio put Iaccarino and another graduate student, Pietro Avallone, to work on a project to make pizza dough without yeast. The results of this scientific and culinary experiment are published in Tuesday’s edition of Physics of Fluids. Di Maio pulled in another colleague: chemical engineer Rossana Pasquino who studies the flow of materials, everything from toothpaste to ketchup to plastics. “Pizza [dough] is a funny material,” she explains, “because it flows, but it has to be also like rubber. It has to be elastic enough [when it’s cooked] to be perfect when you eat it.” — I had to post this because I love Pizza.

Continue reading “Italian scientists hacked pizza physics to make dough without yeast” »

Mar 26, 2022

Army Cutworm Reaching Treatment Thresholds in Kansas Winter Canola

Posted by in categories: chemistry, economics

With the onset of warmer temperatures, winter canola is breaking dormancy and army cutworms are now present in fields across Kansas. Significant army cutworm pressure has been observed in fields northwest of Caldwell in Sumner County.

Army cutworms feed aggressively and significant damage can occur in a short period of time. Smaller plants are most susceptible. The larvae feed on the leaf tissue, leaving the plants with a fed-on appearance (Figure 2). When minor feeding is observed, you may find leaves severed from the plant and laying on the soil surface. Where infestations are high, army cutworms will remove all leaf tissue, leaving only the base of the stem (Figure 3).

The economic threshold for chemical control is 1–2 cutworms per foot of row. Army cutworms behave nocturnally and typically spend the daylight hours below ground. When scouting, it is critical to dig in the soil around individual canola plants to find the larvae. However, it is not unusual to find army cutworm above ground when populations are high (Figure 1). The larvae are greenish-gray and often curl up into a C-shape.