Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1405

Dec 21, 2020

CRISPR/Cas9 Used to Bring LRRK2 Mutation to Possible Monkey Disease Model

Posted by in categories: bioengineering, biotech/medical, genetics

Using CRISPR/Cas9 gene editing tools, researchers introduced a common Parkinson’s disease mutation into stems cells of the marmoset monkey for a first time, paving the way toward a primate model of this disease.

Dec 21, 2020

Dr. Azra Raza — Anticipate, Find, And Destroy The FIRST Cancer Cell; STOP The Disease In Its Tracks

Posted by in category: biotech/medical

As we approach the end of 2020, according to the U.S. National Cancer Institute (NCI), we have had approximately 1, 806, 590 new cases of cancer diagnosed in the United States, with 606, 520 deaths. Cancer continues to be the leading causes of death worldwide. In 2018, there were 18.1 million new cases and 9.5 million cancer-related deaths worldwide.

By 2040, the number of new cancer cases per year is expected to rise to 29.5 million and the number of cancer-related deaths to 16.4 million.

Continue reading “Dr. Azra Raza — Anticipate, Find, And Destroy The FIRST Cancer Cell; STOP The Disease In Its Tracks” »

Dec 21, 2020

Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons

Posted by in categories: biotech/medical, military, terrorism

Circa 2002


The potential threat of biological warfare with a specific agent is proportional to the susceptibility of the population to that agent. Preventing disease after exposure to a biological agent is partially a function of the immunity of the exposed individual. The only available countermeasure that can provide immediate immunity against a biological agent is passive antibody. Unlike vaccines, which require time to induce protective immunity and depend on the host’s ability to mount an immune response, passive antibody can theoretically confer protection regardless of the immune status of the host. Passive antibody therapy has substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague. This article proposes a biological defense initiative based on developing, producing, and stockpiling specific antibody reagents that can be used to protect the population against biological warfare threats.

Defense strategies against biological weapons include such measures as enhanced epidemiologic surveillance, vaccination, and use of antimicrobial agents, with the important caveat that the final line of defense is the immune system of the exposed individual. The potential threat of biological warfare and bioterrorism is inversely proportional to the number of immune persons in the targeted population. Thus, biological agents are potential weapons only against populations with a substantial proportion of susceptible persons. For example, smallpox virus would not be considered a useful biological weapon against a population universally immunized with vaccinia.

Continue reading “Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons” »

Dec 21, 2020

Military eyes bats’ ‘super-immunity’ to combat bioweapons

Posted by in categories: biotech/medical, military

O,.o circa 2018.


Bats’ extraordinary super-immunity long has fascinated virologists.

The U.S. military has a long history of enlisting the help of animals in warfare. The bottlenose dolphin’s sophisticated bio sonar enabled the Navy to detect and clear underwater bombs during the Iraq War, and homing pigeons played a vital role as secret messengers during both world wars, with some awarded medals for bravery.

Continue reading “Military eyes bats’ ‘super-immunity’ to combat bioweapons” »

Dec 21, 2020

Hong Kong scientists claim ‘broad-spectrum’ antiviral breakthrough

Posted by in categories: biotech/medical, chemistry

Hong Kong scientists claim they have made a potential breakthrough discovery in the fight against infectious diseases—a chemical that could slow the spread of deadly viral illnesses.

A team from the University of Hong Kong described the newly discovered chemical as “highly potent in interrupting the life cycle of diverse viruses” in a study published this month in the journal Nature Communications.

The scientists told AFP Monday that it could one day be used as a broad-spectrum antiviral for a host of —and even for viruses that have yet to emerge—if it passes clinical trials.

Dec 20, 2020

Harnessing CRISPR to stop viruses

Posted by in categories: bioengineering, biotech/medical

As reported online Oct. 2, 2019, by Molecular Cell, a Harvard team was able to use the gene editing tool CRISPR to kill certain viruses, including the influenza virus, in a laboratory dish.

Dec 20, 2020

How an immigrant scientist paved the way for covid-19 vaccine

Posted by in categories: biotech/medical, innovation

Katalin Karikó saw her early research rejected but she persisted and is now tipped for a Nobel Prize together with her colleague Dr Drew Weissman. Their breakthrough invention is now the key to the Moderna and Pfizer vaccines, and could open the door to new medical cures. (Leer en español)

Dec 20, 2020

Epigenetic Aging: How old is your DNA?

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Dr. Steve Horvath, a professor of genetics and biostatistics at UCLA, has found a way to measure biological aging – a type of “clock” – based on the methylation pattern of an organism’s genome. Methylations are biochemical processes that modify the activity of a DNA segment without changing its sequence – a type of epigenetic change. This video primer explains the basics of epigenetic clocks, the topic of our interview with Dr. Steve Horvath, coming soon!

Get the show notes here:
https://www.foundmyfitness.com/episodes/epigenetic-clock/

Continue reading “Epigenetic Aging: How old is your DNA?” »

Dec 20, 2020

Baxter Supports New Study Showing Blood Purification with Oxiris Filter Set Can Play a Role in the Management of Severely Ill COVID-19 Patients

Posted by in category: biotech/medical

Baxter International Inc. (NYSE: BAX), a global leader in acute care, recognizes the findings of a prospective, multicenter, observational study on data from the OxirisNet Registry evaluating severely ill patients with COVID-19 in Italy treated with extracorporeal (outside the body) blood purification (EBP) using the company’s Oxiris filter set. From the study, recently published in Critical Care, the investigators reported that patients experienced a significant reduction in serum IL-6 (a pro-inflammatory cytokine) levels, improvement in indicators of organ dysfunction and reduction in expected intensive care unit (ICU) mortality rate as compared to a historical control. Due to the study design, the results do not provide evidence of a causal relationship between EBP treatment with Oxiris and these outcomes. The results do, however, support the feasibility of the use of Oxiris with severely ill COVID-19 patients and provide new insights for clinicians treating this vulnerable patient population.


Study investigators assessed serum IL-6 levels, indicators of organ dysfunction and intensive care unit (ICU) mortality rate in patients undergoing EBP with Oxiris.

Dec 20, 2020

Routine blood test may predict mortality risk in patients with COVID-19

Posted by in category: biotech/medical

A standard test that evaluates blood cells can help identify patients hospitalized with COVID-19 who are at an elevated risk for death, according to research published in JAMA Network Open.

“We were surprised to find that one standard test that quantifies the variation in size of red blood cells — called red cell distribution width, or RDW — was highly correlated with patient mortality, and the correlation persisted when controlling for other identified risk factors like patient age, some other lab tests, and some pre-existing illnesses,” Jonathan Carlson, MD, PhD, an instructor in medicine at Massachusetts General Hospital, said in a press release.

In their cohort study, Carlson and colleagues retrospectively analyzed adult patients with SARS-CoV-2 infection who were admitted to one of four participating hospitals in the Boston area from March 4 through April 28. As part of standard critical care, all patients had their RDW, absolute lymphocyte count and dimerized plasmin fragment D levels collected daily.