Menu

Blog

Archive for the ‘biotech/medical’ category: Page 114

Jul 22, 2024

Anti-ageing ‘supermodel granny’ drug extends life in animal tests

Posted by in categories: biotech/medical, life extension

The treated mice were known as “supermodel grannies” in the lab because of their youthful appearance.

They were healthier, stronger and developed fewer cancers than their unmedicated peers.

The drug is already being tested in people, but whether it would have the same anti-ageing effect is unknown.

Jul 21, 2024

Riverlane Discloses Its Quantum Error Correction Roadmap Through 2026

Posted by in categories: biotech/medical, computing, employment, information science, quantum physics

Implementing error correction in a quantum computer requires putting together a lot of different things. Of course, you want to start with good physical qubits that have as low a physical error rate that you can achieve. You want to add in an error correction algorithm, like the surface code, color code, q-LDPC, or others that can be implemented in your architecture, and you need a fast real time error decoder that can look at the circuit output and very quickly determine what the error is so it can be corrected. The error decoder portion doesn’t get as much attention in the media as the other things, but it is a very critical portion of the solution. Riverlane is concentrating on providing products for this with a series of solutions they name Deltaflow which consists of both a classical ASIC chip along with software. The Deltaflow solution consists of a powerful error decoding layer for identifying errors and sending back corrective instructions, a universal interface that communicates with the computer;s control system, and a orchestration layer for coordinating activities.

Riverlane has released its Deltaflow Error Correction Stack Roadmap that show yearly updates to the technology to support an increase in the number of QuOps (error free Quantum Operations) by 10X every year. We reported last year on a chip called DD1 that is part of their Deltaflow 1 solution that is capable of supporting 1,000 QuOps using a surface code error correction algorithm. And now, Riverlane is defining solutions that will achieve 10,000 QuOps with Deltaflow 2 later this year, 100,000 QuOps with Deltaflow 3 in 2025, and 1,000,000 QuOps, also called MegaQuops in 2026, with their Deltaflow Mega solution.

One characteristic that Riverlane is emphasizing in these designs is to perform the decoding in real time in order to keep the latencies low. Although it is fine for an academic paper to send the ancilla data off to a classical computer and have it determine the error, it might take milliseconds for the operation to complete. That won’t cut it in a production environment running real jobs. With their Deltaflow chips, these operations can be performed at megahertz rates and Riverlane has implemented techniques such as a streaming, sliding window, and parallized decoding approaches to increase the throughput of the decoder chips as much as possible. In future chips they will be implementing “fast logic” capabilities for Clifford gates using approaches including lattice surgery and transversal CZ gates.

Jul 21, 2024

Our brains take naps while we’re awake — and wake when we’re asleep

Posted by in categories: biotech/medical, computing, neuroscience

For the first time, scientists have discovered that a small region of our brain shuts down to take microsecond-long naps while we’re awake. What’s more, these same areas ‘flicker’ awake while we’re asleep. These new findings could offer pivotal insights into neurodevelopmental and neurodegenerative diseases, which are linked to sleep dysregulation.

Scientists from Washington University in St. Louis (WashU) and the University of California Santa Cruz (UCSC) made these findings by accident, noticing how brain waves in one tiny area of the brain shut down suddenly for just milliseconds when we’re awake. And in this same region, those brain waves jolt suddenly, for the same amount of time, when we’re asleep.

“With powerful tools and new computational methods, there’s so much to be gained by challenging our most basic assumptions and revisiting the question of ‘what is a state?’” said Keith Hengen, Assistant Professor of Biology at WashU. “Sleep or wake is the single greatest determinant of your behavior, and then everything else falls out from there. So if we don’t understand what sleep and wake actually are, it seems like we’ve missed the boat.”

Jul 21, 2024

Developers Announce “AI Health Coach” to Battle Chronic Illness

Posted by in categories: biotech/medical, health, robotics/AI

Two companies are coming together to develop an AI Health Coach that uses the power of artificial intelligence to battle chronic diseases.

Jul 21, 2024

Blood protein assessment of leading incident diseases and mortality in the UK Biobank

Posted by in categories: biotech/medical, life extension

Identifying individuals who are at a high risk of age-related morbidities may aid in personalized medicine. Circulating proteins can discriminate disease cases from controls and delineate the risk of incident diagnoses1,2,3,4,5,6,7,8. While singular protein markers offer insight into the mediators of disease5,9,10,11, simultaneously harnessing multiple proteins may improve clinical utility12. Clinically available non-omics scores such as QRISK typically profile the 10-year onset risk of a disease13. Proteomic scores have recently been trained on diabetes, cardiovascular and lifestyle traits as outcomes in 16,894 individuals14. Proteomic and metabolomic scores have also been developed for time-to-event outcomes, including all-cause mortality6,15,16,17,18,19,20,21.

Here, we demonstrate how large-scale proteomic sampling can identify candidate protein targets and facilitate the prediction of leading age-related incident outcomes in mid to later life (see the study design summary in Extended Data Fig. 1). We used 1,468 Olink plasma protein measurements in 47,600 individuals (aged 40–70 years) available as part of the UK Biobank Pharma Proteomics Project (UKB-PPP)22. Cox proportional hazards (PH) models were used to characterize associations between each protein and 24 incident outcomes, ascertained through electronic health data linkage. Next, the dataset was randomly split into training and testing subsets to train proteomic scores (ProteinScores) and assess their utility for modeling either the 5-or 10-year onset of the 19 incident outcomes that had a minimum of 150 cases available. We modeled ProteinScores alongside clinical biomarkers, polygenic risk scores (PRS) and metabolomics measures to investigate how these markers may be used to augment risk stratification.

Jul 21, 2024

The Donation of Human Biological Material for Brain Organoid Research: The Problems of Consciousness and Consent

Posted by in categories: biotech/medical, ethics, neuroscience

Human brain organoids are three-dimensional masses of tissues derived from human stem cells that partially recapitulate the characteristics of the human brain. They have promising applications in many fields, from basic research to applied medicine. However, ethical concerns have been raised regarding the use of human brain organoids. These concerns primarily relate to the possibility that brain organoids may become conscious in the future. This possibility is associated with uncertainties about whether and in what sense brain organoids could have consciousness and what the moral significance of that would be. These uncertainties raise further concerns regarding consent from stem cell donors who may not be sufficiently informed to provide valid consent to the use of their donated cells in human brain organoid research.

Jul 21, 2024

Lab-grown human neuron assembloids effectively model synaptic plasticity

Posted by in categories: biotech/medical, neuroscience

The ability to study human neurological systems depends on having viable, accurate models of brain function. St. Jude researchers have now created a model for such research by combining thalamic cells and cortical cells derived from human induced pluripotent stem cells.

The thalamocortical system mediates multiple sensory and , such as perception, learning and memory. The researchers developed a model of a primitive human thalamocortical system by maintaining thalamic and cortical cell masses known as organoids in close proximity in a culture dish.

In this model, the neurons in both organoids develop and grow long-ranging processes (axons) that extend to the opposite organoid and form functional connections (synapses). The researchers determined that when these synapses are stimulated, they undergo long-term strengthening and weakening of their electrical signals, which is the hallmark of , a process that underlies certain forms of learning and memory.

Jul 21, 2024

New drug extends lifespan by 25%, fights aging, could prevent cancer

Posted by in categories: biotech/medical, life extension

Researchers administered an injection of an anti-IL-11 antibody to 75-week-old mice, neutralizing the harmful effects of IL-11.

Jul 21, 2024

Study suggests prenatal diet may play a role in autism

Posted by in categories: biotech/medical, genetics, health, neuroscience

A small team of public health specialists from the University of Glasgow and the Norwegian Institute of Public Health reports a possible link between some cases of autism and prenatal diet.

In their study, published in JAMA Network Open, the group analyzed information in two large databases of medical information on thousands of mothers and daughters in Norway and England.

Prior research has suggested that there appears to be diet, genetic and involved in the development of in children while they are still in the womb, though the exact cause is still unknown. For this new study, the research team looked more closely at the role of diet in its development.

Jul 21, 2024

Not Science Fiction: Researchers Have Developed Metasurface Tractor Beams

Posted by in categories: biotech/medical, nanotechnology, tractor beam

Researchers at TMOS have developed a metasurface-enabled solenoid beam that can pull particles towards it, potentially revolutionizing non-invasive medical procedures like biopsies. This technology, which uses a thin layer of nanopatterned silicon, offers a lightweight, portable alternative to the bulky equipment previously required for such beams. Credit: University of Melbourne.

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, have made a significant initial advancement in creating tractor beams enabled by metasurfaces. These beams of light, capable of drawing particles towards them, are inspired by the fictional tractor beams seen in science fiction.

In research published in ACS Photonics, the University of Melbourne team describes their solenoid beam that is generated using a silicon metasurface. Previous solenoid beams have been created by bulky special light modulators (SLMs), however, the size and weight of these systems prevent the beams from being used in handheld devices. The metasurface is a layer of nanopatterned silicon only about 1/2000 of a millimeter thick. The team hopes that one day it could be used to take biopsies in a non-invasive manner, unlike current methods such as forceps that cause trauma to the surrounding tissues.

Page 114 of 2,753First111112113114115116117118Last