Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1078

May 11, 2022

Novel supramolecular CRISPR–Cas9 carrier enables more efficient genome editing

Posted by in categories: bioengineering, biotech/medical, genetics

CRISPR-Cas9 is considered a revolutionary gene editing tool, but its applications are limited by a lack of methods by which it can be safely and efficiently delivered into cells. Recently, a research team from Kumamoto University, Japan, have constructed a highly flexible CRISPR-Cas9 carrier using aminated polyrotaxane (PRX) that can not only bind with the unusual structure of Cas9 and carry it into cells, but can also protect it from intracellular degradation by endosomes.

Clustered regularly interspaced short palindromic repeats (CRISPR) and their accompanying protein, CRISPR-associated protein 9 (Cas9), made international headlines a few years ago as a game-changing genome editing system. Consisting of Cas9 and strand of genetic material known as a single-guide RNA (sgRNA), the system can target specific regions of DNA and function as “molecular scissors” to make precise edits. The direct delivery of Cas9–sgRNA complexes, i.e. Cas9 ribonucleoproteins (RNPs), into the nucleus of the cell is considered the safest and most efficient way to achieve genome editing. However, the Cas9 RNP has poor cellular permeability, and thus requires a carrier molecule to transport it past the first hurdle of the cell membrane before it can get to the cell nucleus. These carriers need to bind with Cas9 RNP, carry it into the cell, prevent its degradation by intracellular organelles called “endosomes,” and finally release it without causing any changes to its structure.

In a recent paper published in the June 2022, Volume 27 of Applied Materials Today, a research team from Kumamoto University has developed a transformable polyrotaxane (PRX) carrier that can facilitate genome editing using Cas9RNP with high efficiency and usability. “While there have been some PRX-based drug carriers for and proteins reported before, this is the first report on PRX-based Cas9 RNP carrier. Moreover, our findings describe how to precisely control intracellular dynamics across multiple steps. This will prove invaluable for future research in this direction,” says Professor Keiichi Motoyama, a corresponding author of the paper.

May 11, 2022

Long-lost ‘bum-breathing’ turtle makes its return

Posted by in category: biotech/medical

A revolutionary new DNA detection method has helped rediscover an iconic species of turtle last seen more than 25 years ago in a northern Queensland river.

Water samples taken from the lower Burdekin River by a James Cook University-led team of researchers and analyzed for environmental DNA (eDNA) confirmed the presence of the Irwin’s turtle at many sites along the river, which has not been formally recorded in the area for more than 25 years.

The turtle, first discovered in the Burdekin catchment by the late Steve Irwin and his father Bob in the early 1990s, is among a number of freshwater species that uses its cloaca (equivalent to its bum) to breathe while underwater, which allows it to stay submerged underwater for longer.

May 11, 2022

Dr Jerome H. Kim, MD, Director General, IVI — Safe, Effective, Affordable Vaccines For Public Health

Posted by in categories: biotech/medical, geopolitics, health, military, treaties

Discovery, Development & Delivery Of Safe, Effective & Affordable Vaccines For Global Public Health — Dr. Jerome H. Kim, M.D., Director General, International Vaccine Institute (IVI)


Dr. Jerome H. Kim, M.D., is the Director General of the International Vaccine Institute (IVI — https://www.ivi.int/), a nonprofit International Organization established in 1997 as an initiative of the United Nations Development Programme (UNDP), dedicated to the discovery, development and delivery of safe, effective and affordable vaccines for global public health.

Continue reading “Dr Jerome H. Kim, MD, Director General, IVI — Safe, Effective, Affordable Vaccines For Public Health” »

May 11, 2022

Artificial cell membrane channels composed of DNA can be opened and locked with a key

Posted by in categories: bioengineering, biotech/medical, business

Just as countries import a vast array of consumer goods across national borders, so living cells are engaged in a lively import-export business. Their ports of entry are sophisticated transport channels embedded in a cell’s protective membrane. Regulating what kinds of cargo can pass through the borderlands formed by the cell’s two-layer membrane is essential for proper functioning and survival.

May 11, 2022

Surprising Discovery: How a Gene Mutation Causes Higher Intelligence in Humans

Posted by in categories: biotech/medical, genetics, neuroscience

When genes mutate, it can result in severe diseases of the human nervous system. Neuroscientists at Leipzig University and the University of Würzburg have now used fruit flies to demonstrate how, apart from the negative effect, the mutation of a neuronal gene can have a positive effect – namely higher IQ in humans. They have published their findings in the prestigious journal Brain.

Synapses are the contact points in the brain via which nerve cells ‘talk’ to one another. Disruptions in this communication lead to nervous system diseases, since altered synaptic proteins, for example, can impair this complex molecular mechanism. This can cause mild symptoms, but also very severe disabilities in those affected.

The interest of the two neurobiologists Professor Tobias Langenhan and Professor Manfred Heckmann, from Leipzig and Würzburg respectively, was aroused when they read in a scientific publication about a mutation that damages a synaptic protein. At first, the affected patients attracted scientists’ attention because the mutation caused them to go blind. However, doctors then noticed that the patients were also of above-average intelligence. “It’s very rare for a mutation to lead to improvement rather than loss of function,” says Langenhan, professor and holder of a chair at the Rudolf Schönheimer Institute of Biochemistry at the Faculty of Medicine.

May 11, 2022

Telehealth aims to crack open Paxlovid’s prescription bottleneck

Posted by in categories: biotech/medical, health

After months of shortages, pharmacies across the United States are being stocked with drugs to treat Covid-19. Now, the bottleneck has shifted to getting a prescription — and patients and public health agencies are looking to telehealth for help.


“Sometimes we hear telehealth is going to cure all of our challenges with access to health care, and that’s just not the case,” said Michelle Morse, chief medical officer of New York City’s department of health. “It’s a significant step forward in access, and yet there are still equity concerns with telehealth. It’s not a panacea.”

The patients most likely to know about and navigate digital health platforms to access the antivirals are typically younger, more affluent, and already well-served by the health system. And while a small group of public health departments are offering free telehealth, the end of the Health Resources and Services Administration Covid-19 Uninsured program means that uninsured patients may struggle to pay for teleservices, let alone any Covid care.

Continue reading “Telehealth aims to crack open Paxlovid’s prescription bottleneck” »

May 11, 2022

FDA could authorize Covid shots for children under 5 in June

Posted by in category: biotech/medical

Young kids are the only group in the U.S. ineligible to receive a Covid vaccine, but efforts to vaccinate them have been met with delays.

May 11, 2022

Researchers testing light technology that could protect against the next pandemic

Posted by in categories: biotech/medical, health, law enforcement

New technology could add another layer of protection against the next pandemic by simply turning on a light. Researchers are exploring a new way of using ultraviolet light to make indoor air safer.

“It’s been known for 80 years or so that ultraviolet light can kill bacteria and inactivate viruses in the air so that they’re no longer infectious,” Don K. Milton, professor of occupational and environmental health at the University of Maryland School of Public Health, told CBS News.

Conventional UV-C light has been used extensively in places like hospitals, homeless shelters and prisons. But that conventional UV light can damage the skin and eye, so should not be shined directly at people.

May 10, 2022

Researchers find new function performed by almost half of brain cells

Posted by in categories: biotech/medical, chemistry, health, neuroscience

* Astrocytes play a variety of roles with neurons, but until now, scientists did not know that these cells carry electrical impulses.

* Applying new technology, Tufts University scientists recently discovered in mice that astrocytes are electrically active like neurons. Astrocytes play a variety of roles with neurons, but until now, scientists did not know that these cells carry electrical impulses.


Neurotransmitters are chemical messengers that facilitate the transfer of electrical signals between neurons and support the blood-brain barrier. Scientists have long understood that astrocytes control these substances to support neuronal health.

Continue reading “Researchers find new function performed by almost half of brain cells” »

May 10, 2022

Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice

Posted by in categories: biotech/medical, life extension, sex

Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1,000 ppm acarbose, and 1,000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.

© 2022. The Author(s).

Conflict of interest statement.