Menu

Blog

Archive for the ‘bioengineering’ category: Page 44

May 25, 2023

China faces new Covid wave from XBB variant that could peak at 65 million cases a week

Posted by in categories: bioengineering, biotech/medical, genetics, government

So it is confirmed that the new variant of covid 19 virus is here but the actual spike now is in China. But will most likely spread globally much how previous viruses have done. Be sure to be prepared for another pandemic. Anyway what may be the possible cure would be new bioengineering techniques with crispr to eventually be immune to the virus like I have posted in some genetically engineered cells recently were made. But rest assured this could lead to a global pandemic because the current variant is taxing our current vaccination measures.


The country once had some of the harshest Covid restrictions on the planet, but the response from the government and the public is relatively muted this time.

May 25, 2023

Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience

In short blood dilution is very, very good for you.


In this talk, Dr. Irina Conboy discusses the role of repair and regeneration in lifespan and healthspan, contending that these factors, rather than entropy and time progression, truly govern our aging process. She describes the research her team is pursuing, investigating whether improving the efficiency of bodily repair in older individuals could effectively make them younger. She suggests that biological age could potentially be reversed and discusses heterochronic parabiosis and plasma dilution as potential ways to accomplish that. Conboy highlights recent research suggesting that old blood has a greater impact on cellular health and function than young blood. She presents her team’s experimental research on the rejuvenation effects of plasma dilution, demonstrating its significant impact on reducing senescence, neuroinflammation, and promoting neurogenesis in the brains of old mice.

Continue reading “Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)” »

May 23, 2023

The role of Newtic1 protein in limb regeneration in adult newts

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

Year 2022 This new protein Newtic1 holds promise to fully understanding limb regeneration in humans. Still though genetic engineering will be needed to fully integrate the ability for limb and body part regeneration.


The animal kingdom exhibits a plethora of unique and surprising phenomena or abilities that include, for some animals, the ability to regenerate body parts irrespective of age. Now, researchers from Japan have discovered that the mechanisms behind this peculiar ability in newts have a few surprises of their own.

May 22, 2023

Quantum Biology: Unlocking the Mysteries of How Life Works

Posted by in categories: bioengineering, biotech/medical, genetics, quantum physics

Quantum biology explores how quantum effects influence biological processes, potentially leading to breakthroughs in medicine and biotechnology. Despite the assumption that quantum effects rapidly disappear in biological systems, research suggests these effects play a key role in physiological processes. This opens up the possibility of manipulating these processes to create non-invasive, remote-controlled therapeutic devices. However, achieving this requires a new, interdisciplinary approach to scientific research.

Imagine using your cell phone to control the activity of your own cells to treat injuries and diseases. It sounds like something from the imagination of an overly optimistic science fiction writer. But this may one day be a possibility through the emerging field of quantum biology.

Continue reading “Quantum Biology: Unlocking the Mysteries of How Life Works” »

May 19, 2023

International team creates first chimeric human-monkey embryos

Posted by in categories: bioengineering, biotech/medical, ethics

Year 2022


Experiments such as this one cannot be funded with federal research dollars, though they break no U.S. laws. The work was conducted in China, not because it was illegal in the United States, the researchers said, but because the monkey embryos, which are difficult to procure and expensive, were available there. The experiment used a total of 150 embryos, which were obtained without harming the monkeys, “just like in the IVF procedure,” Tan said.

But such experiments, which combine human cells with those of animals, are nevertheless controversial. This work, and other work by Izpisua Belmonte, has moved so rapidly, bioethicists have had trouble keeping up.

Continue reading “International team creates first chimeric human-monkey embryos” »

May 18, 2023

Quantum physics proposes a new way to study biology—the results could revolutionize our understanding of how life works

Posted by in categories: bioengineering, biotech/medical, genetics, quantum physics

Imagine using your cellphone to control the activity of your own cells to treat injuries and disease. It sounds like something from the imagination of an overly optimistic science fiction writer. But this may one day be a possibility through the emerging field of quantum biology.

Over the past few decades, scientists have made incredible progress in understanding and manipulating at increasingly small scales, from protein folding to genetic engineering. And yet, the extent to which influence living systems remains barely understood.

Continue reading “Quantum physics proposes a new way to study biology—the results could revolutionize our understanding of how life works” »

May 16, 2023

Artificial intelligence identifies anti-aging drug candidates targeting ‘zombie’ cells

Posted by in categories: bioengineering, biotech/medical, chemistry, life extension, robotics/AI

A new publication in the May issue of Nature Aging by researchers from Integrated Biosciences, a biotechnology company combining synthetic biology and machine learning to target aging, demonstrates the power of artificial intelligence (AI) to discover novel senolytic compounds, a class of small molecules under intense study for their ability to suppress age-related processes such as fibrosis, inflammation and cancer.

The paper, “Discovering small-molecule senolytics with ,” authored in collaboration with researchers from the Massachusetts Institute of Technology (MIT) and the Broad Institute of MIT and Harvard, describes the AI-guided screening of more than 800,000 compounds to reveal three with comparable efficacy and superior medicinal chemistry properties than those of senolytics currently under investigation.

“This research result is a for both longevity research and the application of artificial intelligence to ,” said Felix Wong, Ph.D., co-founder of Integrated Biosciences and first author of the publication. “These data demonstrate that we can explore chemical space in silico and emerge with multiple candidate anti-aging compounds that are more likely to succeed in the clinic, compared to even the most promising examples of their kind being studied today.”

May 14, 2023

This Company Is Using Enzymatic DNA Synthesis To Usher In The Next Generation Of Synthetic Biology Innovation

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, food

DNA writing is an aspect of our industry that I’ve been closely watching for several years because it is a critical component of so many groundbreaking capabilities, from cell and gene therapies to DNA data storage. At the SynBioBeta Conference in 2018, the co-founder of a new startup that was barely more than an idea gave a lightning talk on enzymatic DNA synthesis — and I was so struck by the technology the company was aiming to develop that I listed them as one of four synthetic biology startups to watch in 2019. I watched them, and I wasn’t disappointed.

Ansa Biotechnologies, Inc. — the Emeryville, California-based DNA synthesis startup using enzymes instead of chemicals to write DNA — announced in March the successful de novo synthesis of a 1005-mer, the world’s longest synthetic oligonucleotide, encoding a key part of the AAV vector used for developing gene therapies. And that’s just the beginning. Co-founder Dan Lin-Arlow will be giving another lightning talk at this year’s SynBioBeta Conference in just a few weeks. I caught up with him in the lead up and was truly impressed by what Ansa Biotechnologies has accomplished in just 5 years.

Synthetic DNA is a key enabling technology for engineering biology. For nearly 40 years, synthetic DNA has been produced using phosphoramidite chemistry, which facilitates the sequential addition of new bases to a DNA chain in a simple cyclic reaction. While this process is incredibly efficient and has supported countless innovative breakthroughs (a visit to Twist Bioscience’s website will quickly educate you on exciting advances in drug discovery, infectious disease research, cancer therapeutics, and even agriculture enabled by synthetic DNA) it suffers from two main drawbacks: its reliance on harsh chemicals and its inability to produce long (read: complex) DNA fragments.

May 13, 2023

Resurrecting a 2.6 billion-year-old ancient CRISPR system

Posted by in categories: bioengineering, biotech/medical, employment, food

Incapable of replicating on their own, viruses must hijack other organisms, like bacteria, to continue their existence. Little wonder, then, that bacteria had to develop ways to fight back.

Among them is CRISPR, a kind of an immune system that keeps DNA records of previous infections and then uses a protein called Cas to attack viruses that show up again. When Cas reaches a targeted virus, it cleaves the viral DNA, protecting the bacteria from infection.

Researchers have harnessed that targeted, DNA-snipping ability as a gene editing tool for all kinds of organisms. CRISPR can now be found in a variety of fields doing a variety of jobs, from helping to fight sickle cell and high cholesterol in humans to gene editing animals and crops. It’s proven to be an amazingly versatile tool.

May 10, 2023

Fake blood pumps life into this robotic fish

Posted by in categories: bioengineering, biotech/medical, robotics/AI

Researchers have engineered a robotic lionfish with synthetic arteries, similar to those found in a human’s circulatory system. The fish “blood” that runs through it serves as both the robot’s power source and controls its movement. The findings, published Wednesday in Nature, may propel the new wave of soft robots, in which inventors seek to improve lifelike automated machines for human connection.


Synthetic blood vessels in a new robotic fish could improve the technology needed to make lifelike robots run longer.

Page 44 of 222First4142434445464748Last