Menu

Blog

Archive for the ‘3D printing’ category: Page 2

Feb 17, 2024

Researchers 3D print functional human brain tissue with active neural networks

Posted by in categories: 3D printing, biotech/medical, robotics/AI

Researchers from the University of Wisconsin-Madison (UW-Madison) have developed a novel approach for 3D printing functional human brain tissue.

The 3D printing process can create active neural networks in and between tissues that grow in a matter of weeks.

The researchers believe that their 3D bioprinted brain tissue provides an effective tool for modeling brain network activity under physiological and pathological conditions, and can also serve as a platform for drug testing.

Feb 17, 2024

Fluicell partners with Swedish researchers to 3D bioprint complex brain cell structures

Posted by in categories: 3D printing, bioprinting, biotech/medical, neuroscience

Scientists from medical tech company Fluicell have partnered with clinical R&D firm Cellectricon and the Swedish Karolinska Institutet university to 3D bioprint neural cells into complex patterns.

Using the microfluidic printheads featured on Fluicell’s Biopixlar platform, the researchers were able to accurately arrange rat brain cells within 3D structures, without damaging their viability. The resulting cerebral tissues could be used to model the progress of neurological diseases, or to test the efficacy of related drugs.

“We’ve been using Biopixlar to develop protocols for the printing of different neuronal cells types, and we are very pleased with its performance,” said Mattias Karlsson, CEO of Cellectricon. “This exciting technology has the potential to open completely new avenues for in-vitro modeling of a wide range of central and PNS-related diseases.”

Feb 13, 2024

Scientists create new laser-based method to 3D-print artificial cartilage

Posted by in categories: 3D printing, biotech/medical

A new laser-based approach has been introduced to produce artificial cartilage using 3D printing technology.

In this approach, researchers from TU Wien printed living cells within tiny football-like spheroids.

The team hopes this technique could be used to cultivate lab-grown tissue capable of replacing damaged cartilage in humans. It is a strong connective tissue found in various parts of the body that protects our joints and bones.

Feb 11, 2024

This new 3D printing method could solve the organ transplantation crisis

Posted by in categories: 3D printing, bioengineering, biotech/medical

In the United States, the shortage of available organs for transplantation remains a critical issue, with over 100,000 individuals currently on the waiting list. The demand for organs, including hearts, kidneys, and livers, significantly outweighs the available supply, leading to prolonged waiting times and often, devastating consequences.

It is estimated that approximately 6,000 Americans lose their lives while waiting for a suitable donor organ every year.

Researchers at Carnegie Mellon University have developed a novel tissue engineering technique that aims to potentially bridge the gap between organ demand and availability, offering a beacon of hope.

Feb 9, 2024

Photos: World’s tallest 3D-printed tower set to be built in Swiss Alps

Posted by in categories: 3D printing, innovation

The world’s tallest 3D-printed tower, set to be built in the Swiss Alps along the Julier mountain pass, started fabrication at ETH in Zurich this month.

Tor Alva, also known as the “White Tower,” is a pioneering innovation in the 3D printing industry illustrating a 30-meter tall building in Mulegns, Switzerland.

The White Tower project was led by Benjamin Dillenburger and launched in collaboration with Fundaziun Origen.

Feb 6, 2024

Scientists 3D Print Functional Human Brain Tissue

Posted by in categories: 3D printing, biotech/medical, neuroscience

A team of scientists at the University of Wisconsin-Madison claim to have 3D-printed functional human brain tissue for the first time.

They hope their research could open the doors for the development of treatments for existing neurological disorders, including Alzheimer’s and Parkinson’s disease.

As detailed in a new paper published in the journal Cell Stem Cell, the team flipped the usual method of 3D-printing on its side, fabricating horizontal layers of brain cells encased in soft “bio-ink” gel.

Feb 6, 2024

Now on Kickstarter: The ‘First Stable Desktop Pellet 3D Printer’

Posted by in categories: 3D printing, materials

Kickstarter has been the graveyard for several high-profile 3D printers. The crowdfunding platform has also introduced numerous subpar 3D printers, alongside some truly outstanding ones. It was on Kickstarter that Formlabs soared to remarkable heights. The platform also brought us the 3D printing pen. There was a period when a new 3D printing project on Kickstarter emerged every week, but both Kickstarter and additive manufacturing (AM) have become considerably less bustling recently. In 2014, things were simpler, as there were far fewer 3D printers available. Now, with the advent of Bambu Labs and sophisticated open-source 3D printers like Prusas, making a significant impact has become much more challenging. NAW 3D is currently attempting to enter the market with a pellet 3D printer on Kickstarter.

The N300 Pellet 3D Printer

NAW3D’s N300 Desktop Pellet 3D Printer boasts an automatic pellet feeding system, with a 100g capacity consumables box and a 2000cm³ material storage space for continuous printing. Additionally, all axes are equipped with linear guides. What’s more, each stage of the printer incorporates double guides. The printer’s nozzles are capable of reaching temperatures up to 300°C. The print head is designed to deposit substantial amounts of material, with printing tracks ranging from 0.2 to 2mm. This capability suggests that the printer can handle both fine details and rapid, large-scale printing tasks.

Feb 3, 2024

First functional human brain tissue produced through 3D printing

Posted by in categories: 3D printing, biotech/medical, neuroscience

A team of researchers has created the first functional 3D-printed brain tissue to examine the brain’s function and study various neurological disorders.


The first functional 3D-printed brain tissue has been developed to examine the human brain’s function and study various neurological disorders.

According to experts at the University of Wisconsin-Madison, printed tissue can “grow and function like typical brain tissue.”

Continue reading “First functional human brain tissue produced through 3D printing” »

Feb 3, 2024

Revolutionary 3D-Printed Brain Tissue Mimics Human Function

Posted by in categories: 3D printing, biotech/medical, neuroscience

Summary: Researchers developed the world’s first 3D-printed brain tissue that grows and behaves similarly to natural brain tissue, marking a significant leap forward for neurological and neurodevelopmental disorder research.

This novel 3D-printing technique uses a horizontal layering approach and a softer bio-ink, allowing neurons to interconnect and form networks akin to human brain structures.

The ability to precisely control cell types and arrangements provides unparalleled opportunities to study brain functions and disorders in a controlled environment, offering new avenues for drug testing and understanding brain development and diseases like Alzheimer’s and Parkinson’s.

Jan 31, 2024

Data Driven Optimisation and 3D Printed Spikes From BMW Propels Winter Sports

Posted by in categories: 3D printing, information science, transportation

Performance Factors Include Spike Geometry

This technology is perfectly suited to the spike plates in bobsleigh, which, until now, was essentially off-the-shelf. 3D printing opens up entirely new possibilities. Performance factors such as geometry – where exactly the spikes placed, the number of struts and teeth, and the weight can be efficiently varied. The spike plates can be printed quickly and inexpensively, tested by athletes until the optimal result is achieved. There is no longer a standard; the efficiency of the process allows for the production of individual plates for each athlete. The ongoing optimisations are expected to be completed by the 2026 Winter Olympics. The experts are also targeting the stiffness of the plates and, consequently, the shoes because not every athlete performs best with the same shoe stiffness.

Another milestone in this journey was reached this year. Various materials for 3D printing are now available for the spikes, tested by athletes. The use of special construction software is also new. It is utilised to optimise components for vehicles as well as equipment for BMW Group production systems in terms of weight and stiffness. This software also aids engineers at the BMW Group in designing the spike plates. It allows for the rapid, automated, and, above all, individually tailored creation of the respective 3D print data. The preferred parameters of each athlete – such as geometry, stiffness, number, and shape of spikes – are automatically incorporated into the design and adapted to the individual plates, based on 3D scans of the athletes’ shoes. This algorithmic design process results in significant time savings and maximum variability.

Page 2 of 13612345678Last