Toggle light / dark theme

Geological activity can rapidly change deep microbial communities

Posted in biological, chemistry, sustainability

In the deep subsurface that plunges into the Earth for miles, microscopic organisms inhabit vast bedrock pores and veins. Belowground microorganisms, or microbes, comprise up to half of all living material on the planet and support the existence of all life forms up the food chain. They are essential for realizing an environmentally sustainable future and can change the chemical makeup of minerals, break down pollutants, and alter the composition of groundwater.

While the significance of bacteria and archaea is undeniable, the only evidence of their existence in the deep comes from traces of biological material that seep through mine walls, cave streams, and drill holes that tap into aquifers.

Many scientists have assumed that the composition of microbial communities in the deep subsurface is primarily shaped by local environmental pressures on microbial survival such as temperature, acidity, and oxygen concentration. This process, environmental selection, can take years to millennia to cause significant community-level changes in slow-growing communities like the subsurface.