Quantum and Crystalize formations for data storage.
How can you store quantum information as long as possible? A team from the Vienna University of Technology is making an important step forward in the development of quantum storage.
The memory that we use today for our computers differs only between 0 and 1. However, quantum physics also allows arbitrary superimpositions of states. On this principle, the “superposition principle”, ideas for new quantum technologies are based. A key problem, however, is that such quantum-physical overlays are very short-lived. Only a tiny amount of time you can read the information from a quantum memory reliably, then it is irretrievably lost.
At the TU Vienna is an important step forward has now succeeded in developing new quantum memory concepts. In collaboration with the Japanese telecommunication giant NTT, the Viennese researchers, under the direction of Johannes Majer, are working on quantum storage of nitrogen atoms and microwaves. Due to their different environment, the nitrogen atoms have all slightly different properties, as a result of which the quantum state “ruptures” relatively quickly. However, by specifically manipulating a small part of the atoms, it is possible to bring them into a new quantum state, which has a lifetime which is more than tenfold. These results have now been published in the journal “Nature Photonics”.
Comments are closed.