Menu

Blog

Page 794

Apr 5, 2024

MIT discovery rewrites the rules for neutrons and materials

Posted by in categories: particle physics, quantum physics

But now, in a wild physics twist, MIT researchers have figured out that neutrons can actually stick to way bigger structures called quantum dots. Quantum dots are like teeny-tiny crystals made up of tens of thousands of atoms. The fact that a single neutron can cling to one is blowing scientists’ minds.

Their findings, published this week in ACS Nano by a team led by professors Ju Li and Paola Cappellaro, could lead to the development of new tools for studying the fundamental properties of materials, including those influenced by the strong nuclear force. This research also holds promise for the creation of entirely new types of quantum information processing devices.

Apr 5, 2024

Total solar eclipse 2024: how it will help scientists to study the Sun

Posted by in category: futurism

The Sun’s mysterious outer atmosphere, the corona, will become easier to view from Earth on 8 April.

Total solar eclipse 2024: how it will help scientists to study the Sun.

Apr 5, 2024

Life’s Building Blocks are Surprisingly Stable in Venus-Like Conditions: Study

Posted by in categories: alien life, chemistry

If there is life in the solar system beyond Earth, it might be found in the clouds of Venus. In contrast to the planet’s blisteringly inhospitable surface, Venus’ cloud layer, which extends from 30 to 40 miles above the surface, hosts milder temperatures that could support some extreme forms of life.

If it’s out there, scientists have assumed that any Venusian cloud inhabitant would look very different from life forms on Earth. That’s because the clouds themselves are made from highly toxic droplets of sulfuric acid—an intensely corrosive chemical that is known to dissolve metals and destroy most biological molecules on Earth.

But a new study by MIT researchers may challenge that assumption. Published today in the journal Astrobiology, the study reports that, in fact, some key building blocks of life can persist in solutions of concentrated sulfuric acid.

Apr 5, 2024

Craving Snacks After a Meal? It might be Food-Seeking Neurons, Not an Overactive Appetite

Posted by in categories: food, neuroscience

A new study has shown that food-seeking cells exist in a part of a mouse’s brain usually associated with panic — but not with feeding. Activating a selective cluster of these cells kicked mice into ‘hot pursuit’ of live and non-prey food, and showed a craving for fatty foods intense enough that the mice endured foot shocks to get them, something full mice normally would not do. If true in humans, who also carry these cells, the findings could help address the circuit that can circumvent the normal hunger pressures of ‘how, what and when to eat.’

People who find themselves rummaging around in the refrigerator for a snack not long after they’ve eaten a filling meal might have overactive food-seeking neurons, not an overactive appetite.

UCLA psychologists have discovered a circuit in the brain of mice that makes them crave food and seek it out, even when they are not hungry. When stimulated, this cluster of cells propels mice to forage vigorously and to prefer fatty and pleasurable foods like chocolate over healthier foods like carrots.

Apr 5, 2024

High-Quality Microwave Signals Generated from Tiny Photonic Chip

Posted by in categories: robotics/AI, transportation

In a new Nature study, Columbia Engineering researchers have built a photonic chip that is able to produce high-quality, ultra-low-noise microwave signals using only a single laser. The compact device—a chip so small, it could fit on a sharp pencil point—results in the lowest microwave noise ever observed in an integrated photonics platform.

The achievement provides a promising pathway towards small-footprint ultra-low-noise microwave generation for applications such as high-speed communication, atomic clocks, and autonomous vehicles.

The challenge Electronic devices for global navigation, wireless communications, radar, and precision timing need stable microwave sources to serve as clocks and information carriers. A key aspect to increasing the performance of these devices is reducing the noise, or random fluctuations in phase, that is present on the microwave.

Apr 5, 2024

Thermonator Flamethrower Robot Dog | Throwflame

Posted by in category: robotics/AI

Learn More https://tinyurl.com/ThermonatorThermonator is the first-ever flamethrower-wielding robot dog. This quadruped is coupled with the ARC Flamethrower…

Apr 5, 2024

Propelling atomically layered magnets toward green computers

Posted by in category: robotics/AI

Globally, computation is booming at an unprecedented rate, fueled by the boons of artificial intelligence. With this, the staggering energy demand of the world’s computing infrastructure has become a major concern, and the development of computing devices that are far more energy-efficient is a leading challenge for the scientific community.

Apr 5, 2024

I grew up in Italy and have studied longevity for 35 years—this is the No. 1 way to eat for a long, healthy life

Posted by in categories: food, life extension

Valter Longo grew up in Italy and has been studying longevity for 35 years. Here’s what he says is the No. 1 contributing factor to a long life.

Apr 5, 2024

RNA Molecules in Brain Nerve Cells Display Lifelong Stability

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Certain RNA molecules in the nerve cells in the brain last a life time without being renewed. Neuroscientists from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now demonstrated that this is the case together with researchers from Germany, Austria and the USA. RNAs are generally short-lived molecules that are constantly reconstructed to adjust to environmental conditions. With their findings that have now been published in the journal Science, the research group hopes to decipher the complex aging process of the brain and gain a better understanding of related degenerative diseases.

Most cells in the human body are regularly renewed, thereby retaining their vitality. However, there are exceptions: the heart, the pancreas and the brain consist of cells that do not renew throughout the whole lifespan, and yet still have to remain in full working order. “Aging neurons are an important risk factor for neurodegenerative illnesses such as Alzheimer’s,” says Prof. Dr. Tomohisa Toda, Professor of Neural Epigenomics at FAU and at the Max Planck Center for Physics and Medicine in Erlangen. “A basic understanding of the aging process and which key components are involved in maintaining cell function is crucial for effective treatment concepts:”

In a joint study conducted together with neuroscientists from Dresden, La Jolla (USA) and Klosterneuburg (Austria), the working group led by Toda has now identified a key component of brain aging: the researchers were able to demonstrate for the first time that certain types of ribonucleic acid (RNA) that protect genetic material exist just as long as the neurons themselves. “This is surprising, as unlike DNA, which as a rule never changes, most RNA molecules are extremely short-lived and are constantly being exchanged,” Toda explains.

Apr 5, 2024

Paper page — CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

Posted by in category: robotics/AI

LVLM-Intrepret.

An interpretability tool for large vision-language models.

In the rapidly evolving landscape of artificial intelligence, multi-modal large language models are emerging as a significant area of interest.

Continue reading “Paper page — CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching” »

Page 794 of 11,726First791792793794795796797798Last