Menu

Blog

Page 736

Jun 6, 2024

Finding Meaning and Purpose in a Solved World

Posted by in category: robotics/AI

In Superintelligence, Nick Bostrom explored the question, ‘What might happen if AI development goes wrong?’ In this conversation, we ask the opposite question: ‘What happens if everything goes right?’

Jun 6, 2024

Are white holes dawning at last?

Posted by in categories: cosmology, mathematics, quantum physics

As opposed to black holes, white holes are thought to eject matter and light while never absorbing any. Detecting these as yet hypothetical objects could not only provide evidence of quantum gravity but also explain the origin of dark matter.

No one today questions the existence of black holes, objects from which nothing, not even light, can escape. But after they were first predicted in 1915 by Einstein’s general theory of relativity, it took many decades and multiple observations to show that they actually existed. And when it comes to white holes, history may well repeat itself. Such objects, which are also predicted by general relativity, can only eject matter and light, and as such are the exact opposite of black holes, which can only absorb them. So, just as it is impossible to escape from a black hole, it is equally impossible to enter a white one, occasionally and perhaps more aptly dubbed a “white fountain”. For many, these exotic bodies are mere mathematical curiosities.

Jun 6, 2024

This AI Paper from Princeton and the University of Warwick Proposes a Novel Artificial Intelligence Approach to Enhance the Utility of LLMs as Cognitive Models

Posted by in category: robotics/AI

Scientists studying Large Language Models (LLMs) have found that LLMs perform similarly to humans in cognitive tasks, often making judgments and decisions that deviate from rational norms, such as risk and loss aversion. LLMs also exhibit human-like biases and errors, particularly in probability judgments and arithmetic operations tasks. These similarities suggest the potential for using LLMs as models of human cognition. However, significant challenges remain, including the extensive data LLMs are trained on and the unclear origins of these behavioural similarities.

The suitability of LLMs as models of human cognition is debated due to several issues. LLMs are trained on much larger datasets than humans and may have been exposed to test questions, leading to artificial enhancements in human-like behaviors through value alignment processes. Despite these challenges, fine-tuning LLMs, such as the LLaMA-1-65B model, on human choice datasets has improved accuracy in predicting human behavior. Prior research has also highlighted the importance of synthetic datasets in enhancing LLM capabilities, particularly in problem-solving tasks like arithmetic. Pretraining on such datasets can significantly improve performance in predicting human decisions.

Researchers from Princeton University and Warwick University propose enhancing the utility of LLMs as cognitive models by (i) utilizing computationally equivalent tasks that both LLMs and rational agents must master for cognitive problem-solving and (ii) examining task distributions required for LLMs to exhibit human-like behaviors. Applied to decision-making, specifically risky and intertemporal choice, Arithmetic-GPT, an LLM pretrained on an ecologically valid arithmetic dataset, predicts human behavior better than many traditional cognitive models. This pretraining suffices to align LLMs closely with human decision-making.

Jun 6, 2024

Google DeepMind used a large language model to solve an unsolved math problem

Posted by in categories: mathematics, robotics/AI

They had to throw away most of what it produced but there was gold among the garbage.

Jun 6, 2024

Unlocking the Power of Quantum Computing

Posted by in categories: computing, engineering, quantum physics

It seems like over the past few years, Quantum is being talked about more and more. We’re hearing words like qubits, entanglement, super position, and quantum computing. But what does that mean … and is quantum science really that big of a deal? Yeah, it is.

It’s because Quantum science has the potential to revolutionize our world. From processing data to predicting weather, to picking stocks or even discovering new medical drugs. Quantum, specifically quantum computers, could solve countless problems.

Continue reading “Unlocking the Power of Quantum Computing” »

Jun 6, 2024

How photonic is preparing to scale quantum computing to realize its transformative potential

Posted by in categories: computing, quantum physics

In an interview Dr Stephanie Simmons, Chief Quantum Officer of Photonic, explains the need to scale quantum computers and their approach to tackling this challenge to pave the way for reliable, large-scale quantum computing.

For quantum computers to move from laboratory to commercialization, these devices will need to scale to millions of qubits.

Scaling quantum computers is critical to unlocking exponential speed-ups to help solve some of the world’s biggest problems and unlock its greatest opportunities, said Stephanie Simmons, CQO of Photonic, a company focused on using its photonically linked spin qubits in silicon to build a scalable, fault-tolerant and distributed quantum system.

Jun 6, 2024

Can an emerging field called ‘neural systems understanding’ explain the brain?

Posted by in categories: neuroscience, robotics/AI

Perhaps.


This mashup of neuroscience, artificial intelligence and even linguistics and philosophy of mind aims to crack the deep question of what ‘understanding’ is, however un-brain-like its models may be.

Jun 6, 2024

Understanding Neural Network And Deep Learning

Posted by in category: robotics/AI

Discover the power of neural network and deep learning, how they mimic the human brain, and their applications in artificial intelligence and machine learning.

Jun 6, 2024

First DESI results shine a light on Hubble tension

Posted by in categories: cosmology, particle physics, robotics/AI

The expansion of the universe has been a well-established fact of physics for almost a century. By the turn of the millennium the rate of this expansion, referred to as the Hubble constant (H 0), had converged to a value of around 70 km s –1 Mpc –1. However, more recent measurements have given rise to a tension: whereas those derived from the cosmic microwave background (CMB) cluster around a value of 67 km s –1 Mpc –1, direct measurements using a local distance-ladder (such as those based on Cepheids) mostly prefer larger values around 73 km s –1 Mpc –1. This disagreement between early-and late-universe measurements, respectively, stands at the 4–5 σ level, thereby calling for novel measurements.

One such source of new information are large galaxy surveys, such as the one currently being performed by the Dark Energy Spectroscopic Instrument (DESI). This Arizona-based instrument uses 5,000 individual robots that optimise the focal plane of the detector to allow it to measure 5,000 galaxies at the same time. The goal of the survey is to provide a detailed 3D map, which can be used to study the evolution of the universe by focussing on the distance between galaxies. During its first year of observation, the results of which have now been released, DESI has provided a catalogue of millions of objects.

Small fluctuations in the density of the early universe resulted not only in signatures in the CMB, as measured for example by the Planck probe, but also left imprints in the distribution of baryonic matter. Each over-dense region is thought to contain dark matter, baryonic matter and photons. The gravitational force from dark matter on the baryons is countered by radiation pressure from the photons. From the small over-densities, baryons are dragged along by photon pressure until these two types of particles decoupled during the recombination era. The original location of the over-density is surrounded by a sphere of baryonic matter, which typically is at a distance referred to as the sound horizon. The sound horizon at the moment of decoupling, denoted r d, leaves an imprint that has since evolved to produce the density fluctuations in the universe that seeded large-scale structures.

Jun 6, 2024

Scientist advance simulation of metal-organic frameworks with machine learning

Posted by in category: robotics/AI

Hydrogen storage, heat conduction, gas storage, CO2 and water sequestration—metal-organic frameworks (MOFs) have extraordinary properties due to their unique structure in the form of microporous crystals, which have a very large surface area despite their small size. This makes them extremely interesting for research and practical applications. However, MOFs are very complex systems that have so far required a great deal of time and computing power to simulate accurately.

Page 736 of 11,999First733734735736737738739740Last