Menu

Blog

Page 460

Jul 23, 2024

Near-infrared photobiomodulation technique targets brain inflammation

Posted by in categories: biotech/medical, life extension, neuroscience

As the world grapples with an aging population, the rise in neurodegenerative diseases such as Alzheimer’s and Parkinson’s is becoming a significant challenge. These conditions place a heavy burden not only on those afflicted but also on their families and society at large. Traditional treatments, including drug therapy and surgery, often come with side effects and high costs, and more critically, they fail to halt the progression of neuronal degeneration or prevent the death of neurons in patients.

Jul 23, 2024

Spontaneous supercrystal discovered in switching metal-insulator

Posted by in category: materials

A supercrystal formation previously unobserved in a metal-insulating material was discovered by a Cornell-led research team, potentially unlocking new ways to engineer materials and devices with tunable electronic properties.

Jul 23, 2024

High-energy collision study reveals new insights into quark-gluon plasma

Posted by in categories: cosmology, particle physics

In high-energy physics, researchers have unveiled how high-energy partons lose energy in nucleus-nucleus collisions, an essential process in studying quark-gluon plasma (QGP). This finding could enhance our knowledge of the early universe moments after the Big Bang.

Jul 23, 2024

Scientists resolves a long-debated anomaly in how nuclei spin

Posted by in category: physics

In previous research, measurements found that for fast rotations, for example in nuclei like neon-20 or chromium-48, the energy for spinning changes unexpectedly. Scientists attributed this to an anomalous increase in the moment of for fast rotations, likely due to the bulging out. Earlier models suggested that fast-rotating nuclei ultimately become spheres, but newer models have found deformed shapes. Now, large-scale simulations of have revealed surprising new explanations of the elusive physics of fast-spinning nuclei.

For the first time in nearly 50 years, scientists accurately calculated the moment of inertia and studied its hypothesized anomalous increase through state-of-the-art simulations of nuclei. The simulations for neon-20 replicate the energy measurements. Remarkably, however, the simulations do not find the anomalous increase. Instead, they reveal a change in the interior of the nucleus.

Similar microscopic simulations for chromium-48 confirm this surprising result. Furthermore, the results resolve the long-lasting question of whether a prolate nucleus that starts to quickly spin becomes spherical or oblate. This research, published in Physical Review C, shows that several competing shapes emerge, some prolate and some oblate, which on average appear spherical.

Jul 23, 2024

When Particles Outrun Light: Unraveling the Mystery of Cherenkov Radiation

Posted by in category: particle physics

New research explores the Cherenkov effect where superluminal speeds generate radiation and discusses new research using this principle to create terahertz radiation for advanced imaging and radar applications.

When charged particles travel through a medium at a speed greater than the phase speed of light in that medium (a phenomenon known as superluminal speed), they emit radiation. The resulting radiation forms a conical pattern. This phenomenon, known as the Cherenkov effect, has numerous fundamental and practical applications. The explanation of this effect earned the Nobel Prize in Physics in 1958.

The oblique incidence of light on the interface between two media is a similar phenomenon; in this case, a wave of secondary radiation sources is formed along the interface, which propagates at a speed exceeding the phase speed of light. The refraction and reflection of light from an interface is the result of the addition of the amplitudes of waves from all sources formed during light incidence.

Jul 23, 2024

Solid-State Cooling: A Future Without Refrigerants

Posted by in categories: futurism, materials

Researchers have made significant advancements in understanding atomic-scale heat motion in materials, crucial for developing solid-state cooling technology.

This technology, which operates without traditional refrigerants or moving parts, uses materials like nickel-cobalt-manganese-indium magnetic shape-memory alloys to exploit the magnetocaloric effect for efficient cooling.

A crucial knowledge gap in atomic-scale heat motion was recently bridged by a research team led by the Department of Energy’s Oak Ridge National Laboratory. This new understanding holds promise for enhancing materials to advance an emerging technology called solid-state cooling.

Jul 23, 2024

Solving Quantum Mysteries: Physicists Confirm Entropy Rule for Entanglement

Posted by in categories: computing, cosmology, quantum physics

New research has established a reversible framework for quantum entanglement, aligning it with the principles of thermodynamics and paving the way for improved manipulation and understanding of quantum resources.

Bartosz Regula from the RIKEN Center for Quantum Computing and Ludovico Lami from the University of Amsterdam have demonstrated through probabilistic calculations the existence of an “entropy” rule for quantum entanglement. This discovery could enhance our understanding of quantum entanglement, a crucial resource underpinning the potential of future quantum computers. Although quantum entanglement has been a research focus in quantum information science for decades, optimal methods for its effective utilization remain largely unknown.

The second law of thermodynamics, which says that a system can never move to a state with lower “entropy”, or order, is one of the most fundamental laws of nature and lies at the very heart of physics. It is what creates the “arrow of time,” and tells us the remarkable fact that the dynamics of general physical systems, even extremely complex ones such as gases or black holes, are encapsulated by a single function, its “entropy.”

Jul 23, 2024

Two-Step Secret: Scientists Solve Electrochemical Biotechnology Mystery

Posted by in categories: biotech/medical, chemistry, computing, neuroscience

New research has revealed that the lag observed in organic electrochemical transistors (OECTs) when switched on is due to a two-step activation process, providing crucial insights for designing more effective and customizable OECTs for various technological and biological applications.

Researchers who want to bridge the divide between biology and technology spend a lot of time thinking about translating between the two different “languages” of those realms.

“Our digital technology operates through a series of electronic on-off switches that control the flow of current and voltage,” said Rajiv Giridharagopal, a research scientist at the University of Washington. “But our bodies operate on chemistry. In our brains, neurons propagate signals electrochemically, by moving ions — charged atoms or molecules — not electrons.”

Jul 23, 2024

Scientists finally discover sugar that could cure male pattern baldness

Posted by in category: biotech/medical

A naturally occurring sugar called 2-deoxy-D-ribose (2dDR) may boost hair growth.

Jul 23, 2024

Mars Surprise: Rover Discovers Pure Sulfur Rocks

Posted by in categories: robotics/AI, space

Did life ever exist on Mars, and if so, how did it get there? This is the goal of NASA’s Curiosity rover, which has traversed Gale Crater on Mars since 2012. But a recent finding by the car-sized robotic explorer could help bring scientists one step closer to answering these questions as Curiosity sent back images of yellow crystals revealed to be deposits of elemental sulfur, along with an entire field of them. This finding was accidentally “un-earthed” as Curiosity drove over them during its excursions. While scientists didn’t anticipate finding elemental sulfur in this region, this finding could hold the potential to help piece together the geologic history of Gale Crater and whether life once existed there.

Recent image of elemental sulfur crystals obtained by NASA’s Curiosity rover on Mars. (Credit: NASA/JPL-Caltech/Malin Space Science Systems)

“Finding a field of stones made of pure sulfur is like finding an oasis in the desert,” said Dr. Ashwin Vasavada, who is a project scientist on Curiosity at NASA’s Jet Propulsion Laboratory. “It shouldn’t be there, so now we have to explain it. Discovering strange and unexpected things is what makes planetary exploration so exciting.”

Page 460 of 11,948First457458459460461462463464Last