Menu

Blog

Page 3099

Nov 21, 2022

Ancestor of all life on Earth evolved earlier than we thought, according to our new timescale

Posted by in categories: alien life, chemistry

Microbial life may have resided within the first four kilometers of Mars’s porous crust.

Four billion years ago, the solar system was still young. Almost fully formed, its planets were starting to experience asteroid strikes a little less frequently. Our own planet could have become habitable as long as 3.9 billion years ago, but its primitive biosphere was much different than it is today. Life had not yet invented photosynthesis, which some 500 million years later would become its main source of energy. The primordial microbes — the common ancestors to all current life forms on Earth — in our planet’s oceans, therefore, had to survive on another source of energy. They consumed chemicals released from inside the planet through its hydrothermal systems and volcanoes, which built up as gas in the atmosphere.

Some of the oldest life forms in our biosphere were microorganisms known as “hydrogenotrophic methanogens” that particularly benefited from the atmospheric composition of the time. Feeding on the CO2 (carbon dioxide) and H2 (dihydrogen) that abounded in the atmosphere (with H2 representing between 0.01 and 0.1% of the atmospheric composition, compared to the current approximate of 0.00005%), they harnessed enough energy to colonize the surface of our planet’s oceans. we explore Mars, it is becoming clearer that similar environmental conditions were developing on its surface at the same time as those that enabled methanogens to flourish in the oceans back on Earth.

Nov 21, 2022

These tiny magnetic robots can infiltrate tumors — and maybe destroy cancer

Posted by in categories: biotech/medical, robotics/AI

Nov 21, 2022

Les Ordinateurs Quantiques

Posted by in categories: quantum physics, supercomputing

Could energy efficiency be quantum computers’ greatest strength yet?

Quantum computers have attracted considerable interest of late for their potential to crack problems in a few hours where they might take the age of the universe (i.e., tens of billions of years) on the best supercomputers. Their real-life applications range from drug and materials design to solving complex optimization problems. They are, therefore, primarily intended for scientific and industrial research.

Continue reading “Les Ordinateurs Quantiques” »

Nov 21, 2022

First power from Hywind Tampen

Posted by in category: energy

Nov 21, 2022

A machine learning approach for the discrimination of theropod and ornithischian dinosaur tracks

Posted by in category: robotics/AI

Nov 21, 2022

Could Humans Ever Create a Galactic Empire?

Posted by in category: space

Nov 21, 2022

12-year-old Girl Scores Higher Than Einstein and Hawking on IQ Test

Posted by in category: futurism

Nov 21, 2022

Apple Prepares to Get Made-in-US Chips in Pivot From Asia

Posted by in category: computing

Nov 21, 2022

Pre-Market Consultation for Human Food Made Using Animal Cell Culture

Posted by in category: food

Nov 21, 2022

A breakthrough 3D-printed material incredibly strong and ductile

Posted by in categories: 3D printing, biotech/medical, drones, nanotechnology, satellites

It’s all thanks to nanoclusters.

A new nanoscale 3D printing material developed by Stanford University engineers may provide superior structural protection for satellites, drones, and microelectronics.


A dual-phase, nanostructured high-entropy alloy that has been 3D printed by researchers from the University of Massachusetts Amherst and the Georgia Institute of Technology is stronger and more ductile than other cutting-edge additively manufactured materials. This discovery could lead to higher-performance components for use in aerospace, medicine, energy, and transportation.

Continue reading “A breakthrough 3D-printed material incredibly strong and ductile” »