Menu

Blog

Page 2897

Dec 7, 2022

U.S. Dept of Energy Breakthrough: Detecting Dark Matter With Quantum Computers

Posted by in categories: computing, cosmology, particle physics, quantum physics

Dark matter makes up about 27% of the matter and energy budget in the universe, but scientists do not know much about it. They do know that it is cold, meaning that the particles that make up dark matter are slow-moving. It is also difficult to detect dark matter directly because it does not interact with light. However, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory (Fermilab) have discovered a way to use quantum computers to look for dark matter.

Aaron Chou, a senior scientist at Fermilab, works on detecting dark matter through quantum science. As part of DOE’s Office of High Energy Physics QuantISED program, he has developed a way to use qubits, the main component of quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Dec 7, 2022

How neurons autonomously regulate their excitability

Posted by in categories: biotech/medical, mobile phones, robotics/AI

Nerve cells can regulate their sensitivity to incoming signals autonomously. A new study led by the University of Bonn has now discovered a mechanism that does just that. The German Center for Neurodegenerative Diseases and the Max Planck Institute for Neurobiology of Behavior were involved in the work. The results have now been published in the journal Cell Reports.

Anyone who has ever sent a voice message with a knows how much the volume matters: Shouting into the microphone results in a distorted and unclear recording. But whispering is not a good idea either—then the result is too quiet and also difficult to understand. That is why sound engineers ensure the perfect sound at every concert and talk show: They regulate each microphone’s gain to match the input signal.

The neurons in the brain can also fine-tune their sensitivity, and even do so autonomously. A new study led by the University of Bonn and the University Hospital Bonn shows how they do this. For this purpose, the participants investigated nerve cell networks that also play a role in vision, hearing and touch. The stimulus first travels to the so-called thalamus, a structure deep in the center of the brain. From there, it is then conducted to the , where it is further processed.

Dec 7, 2022

Your Windows PC may be hit with yet another bug, causing some apps to stop responding

Posted by in category: cybercrime/malcode

Microsoft’s Windows Client and Server builds are not hit with a nasty bug, causing some apps to stop responding. The software giant has recently confirmed the issue and promised to bring a fix in an upcoming software update. Microsoft also has a hack to identify if users are currently using any affected apps.

Dec 7, 2022

Scientists finally know why people get more colds and flu in winter

Posted by in category: futurism

A new scientific finding has uncovered why we get more viral colds, flu and Covid in winter and during cold snaps.

Dec 7, 2022

Elon Musk keeps bringing in new people to Twitter, like enthusiastic interns, cousins, and even Bari Weiss

Posted by in category: Elon Musk

Elon Musk has owned Twitter for about five weeks. Already, he has made massive changes and upended norms of corporate hiring and access.

Dec 7, 2022

Researchers develop nano-based technology to fight osteoporosis

Posted by in categories: biotech/medical, nanotechnology

University of Central Florida researchers have created unique technology for treating osteoporosis that uses nanobubbles to deliver treatment to targeted areas of a person’s body.

The new technology was developed by Mehdi Razavi, an assistant professor in UCF’s College of Medicine and a member of the Biionix Cluster at UCF, and UCF biomedical sciences student Angela Shar at the Biomaterials and Nanomedicine Lab, as part of the lab’s focus on developing tools for diagnostics and therapeutics.

Osteoporosis is a disease marked by an imbalance between the body’s ability to form new , or ossification, and break down, or remove, old , known as resorption.

Dec 7, 2022

Maintaining healthy lifestyle might prevent up to 60% of inflammatory bowel disease cases, suggests new research

Posted by in categories: biotech/medical, futurism

Adopting and maintaining a healthy lifestyle might prevent up to 60% of inflammatory bowel disease cases—Crohn’s disease and ulcerative colitis—finds a large international study, published online in the journal Gut.

The findings prompt the study authors to suggest that subject to further research, particularly in those at high risk of developing these conditions, may be a feasible option for future preventive strategies.

Inflammatory bowel disease, or IBD for short, affects an estimated 3 million adults in the U.S. and another 1.3 million in Europe, and diagnoses have been increasing, particularly in newly industrialized countries.

Dec 7, 2022

Common workplace fumes and dusts may heighten rheumatoid arthritis risk

Posted by in categories: biotech/medical, genetics

Breathing in common workplace dusts and fumes from agents such as vapors, gases, and solvents may heighten the risk of developing rheumatoid arthritis, suggests research published online in the Annals of the Rheumatic Diseases.

What’s more, such vapors, gases, and solvents seem to boost the detrimental impact of smoking and genetic susceptibility to the disease, the findings indicate.

Rheumatoid arthritis (RA) is a chronic autoimmune joint disorder characterized by painful and disabling inflammation. It affects up to 1% of the world’s population.

Dec 7, 2022

Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications

Posted by in categories: biotech/medical, chemistry, health, nanotechnology

Two categories of nanofabrication technologies are known as top-down and bottom-up approaches [5]. For the former, nanosized materials are prepared through the rupture of bulk materials to fine particles, and such a process is usually conducted by diverse physical and mechanical techniques like lithography, laser ablation, sputtering, ball milling and arc-discharging [6, 7]. These techniques themselves are simple, and nanosized materials can be produced quickly after relatively short technological process, but expensive specialized equipment and high energy consumption are usually inevitable. Meanwhile, a variety of efficient chemical bottom-up methods, where atoms assemble into nuclei and then form nanoparticles, have been intensively studied to synthesize and modulate nanomaterials with specific shape and size [8].

Indeed, chemical methodologies, including but not limited to, aqueous reaction using chemical reducing agents (e.g. hydrazine hydrate and sodium borohydride), electrochemical deposition, hydrothermal/solvothermal synthesis, sol–gel processing, chemical liquid/vapor deposition, have been developed up to now [5, 6]. These approaches can not only produce diverse nanomaterials with fairly high yields, but also endow fine controllability in tailoring nanostructures and properties of the products. Nevertheless, they have been encountering some serious challenges of harsh reaction conditions (e.g. pH and temperature), potential risks in human health and environment, and low cost-effectiveness. Moreover, there are biosafety concerns on products synthesized chemically using hazardous reagents, which restricts their applications in many areas, particularly in medicines and pharmaceuticals [9].

Impressively, biological methodology is becoming a favourite in nanomaterial synthesis nowadays to address challenges in chemical synthesis. Compared to chemical routes, biosynthesis using natural and biological materials as reducing, stabilizing and capping agents are simple, energy-and cost-effective, mild and environment-friendly, which is termed as “Green Chemistry” [2, 6]. More significantly, the biologically synthesized nanomaterials have much better competitiveness in biocompatibility, compared to those chemically derived counterparts. On the one hand, the biogenic nanomaterials are free from toxic contamination of by-products that are usually involved in chemical synthesis process; on the other hand, the biosynthesis do not need additional stabilizing agents because either the used organisms themselves or their constituents can act as capping and stabilizing agents and the attached biological components in turn form biocompatible envelopes on the resultant nanomaterials, leading to actively interact with biological systems [2]. As one of the most abundant biological resources, some microorganisms have adapted to habitat contaminated with toxic metals, and thus evolved powerful tactics for remediating polluted environment while recycling metal resources [7, 10], and some review articles on the biosynthesis of MNPs using diverse microorganisms including bacteria, yeast, fungi, alga, etc. and their applications have been published in recent years [1, 2, 6, 7, 10].

Dec 7, 2022

New liquid-coated air filters can improve early detection and analysis of airborne pathogens

Posted by in categories: bioengineering, biotech/medical, security

Researchers from the University of Maine and University of Massachusetts Amherst have designed new liquid-coated air filters that allow for improved early detection and analysis of airborne bacteria and viruses, including the one that causes COVID-19. The team has published their findings in the journal ACS Applied Materials & Interfaces.

While conventional air filters help control the spread of disease in like hospitals and travel hubs, they struggle to keep the pathogens they capture viable for testing. The inefficiency can inhibit scientists’ ability to identify biological threats early on, which could hinder any response and protection measures.

The research team, led by Caitlin Howell, a UMaine associate professor of biomedical engineering, developed a composite membrane with a liquid layer for filters that is better suited for capturing viable bacterial and viral samples for analysis. They modeled the membrane after the Nepenthes pitcher plant, which has a slippery rim and inner walls that cause insects to fall and become trapped within its digestive fluid. By keeping the bacteria and they capture feasible for examination, researchers say their novel liquid-coated air filters can enhance air sampling efforts, early pathogen detection and biosurveillance for national security.