Menu

Blog

Page 2846

Jul 21, 2023

Zygote Awakening: New Insights into Embryo Development

Posted by in categories: biotech/medical, genetics

Summary: Researchers reveal how a fertilized egg cell, or zygote, initiates its own genetic program, a process known as zygote genome activation.

The research identifies the OBOX gene family as master-regulators, crucial for this activation. These genes instruct the enzyme RNA polymerase II to transcribe the right genes at the right time, beginning the embryo’s development.

The team suggests that the genes’ functions are redundant to ensure this critical transition occurs successfully.

Jul 21, 2023

New method brings increased efficiency, precision and reliability in DNA editing

Posted by in category: biotech/medical

In a new study published in Nature Methods, researchers at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, describe improvements in the methods with which mutations can be introduced in human and other genomes—making these methods much more efficient and less error prone.

In the field of genome editing, scientists often need to change one letter—corresponding to one of the DNA bases Adenine, Guanine, Cytosine or Thymine—to another letter at one specific position in the genome. To do this, they use reagents that cut both strands of the DNA close to the position they want to change.

They then provide the cell with DNA molecules that contain the desired new letter in the hope that the cell’s repair systems will use these molecules to introduce the desired mutation when the DNA break is repaired. Since different repair systems in the cells compete with each other and only one of these systems is able to introduce the desired new mutation, applications of genome editing of single letters have so far been limited by low efficiency and unintended byproducts.

Jul 21, 2023

A quantum radar that outperforms classical radar by 20%

Posted by in categories: computing, quantum physics

Quantum technologies, a wide range of devices that operate by leveraging the principles of quantum mechanics, could significantly outperform classical devices on some tasks. Physicists and engineers worldwide have thus been working hard to achieve this long-sought “quantum advantage” over classical computing approaches.

A research team at Ecole Normale Supérieure de Lyon, CNRS recently developed a quantum that could significantly outperform all existing radars based on classical approaches. This new radar, introduced in a paper published in Nature Physics, concurrently measures an entangled probe and the idler photon states occurring once this probe reflects from target objects, merging with thermal noise.

“We invented a superconducting circuit in 2020 that was able, among other things, to generate entanglement, store and manipulate microwave quantum states and count the number of photons in a microwave field,” Benjamin Huard, one of the researchers who carried out the study, told Phys.org. “We then realized that it had all the features we needed to tackle one of the biggest challenges in microwave quantum metrology: demonstrating a in radar sensing.”

Jul 21, 2023

Scientists Diagnose The Youngest Case of Alzheimer’s Ever Reported

Posted by in categories: biotech/medical, neuroscience

Neurologists at a memory clinic in China diagnosed a 19-year-old with what they believe to be Alzheimer’s disease, making him the youngest person to be diagnosed with the condition in the world.

The male teenager began experiencing memory decline around age 17, and the cognitive losses only worsened over the years.

Continue reading “Scientists Diagnose The Youngest Case of Alzheimer’s Ever Reported” »

Jul 21, 2023

AI could give us digital immortality but we probably don’t want it

Posted by in categories: business, life extension, robotics/AI

In the 1990 fantasy drama — Truly, Madly, Deeply, lead character Nina, (Juliet Stevenson), is grieving the recent death of her boyfriend Jamie (Alan Rickman). Sensing her profound sadness, Jamie returns as a ghost to help her process her loss. If you’ve seen the film, you’ll know that his reappearance forces her to question her memory of him and, in turn, accept that maybe he wasn’t as perfect as she’d remembered. Here in 2023, a new wave of AI-based “grief tech” offers us all the chance to spend time with loved ones after their death — in varying forms. But unlike Jamie (who benevolently misleads Nina), we’re being asked to let artificial intelligence serve up a version of those we survive. What could possibly go wrong?

While generative tools like ChatGPT and Midjourney are dominating the AI conversation, we’re broadly ignoring the larger ethical questions around topics like grief and mourning. The Pope in a puffa is cool, after all, but thinking about your loved ones after death? Not so much. If you believe generative AI avatars for the dead are still a way out, you’d be wrong. At least one company is offering digital immortality already — and it’s as costly as it is eerie.

Continue reading “AI could give us digital immortality but we probably don’t want it” »

Jul 21, 2023

Does Einstein’s Theory of Special Relativity Suggest That There Is an Afterlife?: A Theoretical Physicist Explains

Posted by in category: quantum physics

“Let’s talk about the physics of dead grandmothers.” Thus does theoretical physicist Sabine Hossenfelder start off the Big Think video above, which soon gets into Einstein’s theory of special relativity. The question of how Hossenfelder manages to connect the former to the latter should raise in anyone curiosity enough to give these ten minutes a watch, but she also addresses a certain common category of misconception. It all began, she says, when a young man posed to her the following question: “A shaman told me that my grandmother is still alive because of quantum mechanics. Is this right?”

Upon reflection, Hossenfelder arrived at the conclusion that “it’s not entirely wrong.” For decades now, “quantum mechanics” has been hauled out over and over again to provide vague support to a range of beliefs all along the spectrum of plausibility. But in the dead-grandmother case, at least, it’s not the applicable area of physics. “It’s actually got something to do with Einstein’s theory of special relativity,” she says. With that particular achievement, Einstein changed the way we think about space and time, proving that “everything that you experience, everything that you see, you see as it was a tiny, little amount of time in the past. So how do you know that anything exists right now?”

Jul 21, 2023

Finding game-changing superconductors with machine learning tools

Posted by in categories: biotech/medical, nuclear energy, robotics/AI, supercomputing

Superconductors—found in MRI machines, nuclear fusion reactors and magnetic-levitation trains—work by conducting electricity with no resistance at temperatures near absolute zero, or −459.67°F.

The search for a conventional superconductor that can function at room temperature has been ongoing for roughly a century, but research has sped up dramatically in the last decade because of new advances in (ML) using supercomputers such as Expanse at the San Diego Supercomputer Center (SDSC) at UC San Diego.

Most recently, Huan Tran, a senior research scientist at Georgia Institute of Technology (Georgia Tech) School of Materials Science and Engineering, has worked on Expanse with Professor Tuoc Vu from Hanoi University of Science and Technology (Vietnam) to create an artificial intelligence/machine learning (AI/ML) approach to help identify new candidates for potential superconductors in a much faster and reliable way.

Jul 21, 2023

Cannabis Use Linked to Epigenetic Changes, Scientists Discover

Posted by in categories: biotech/medical, genetics, health, law

Using cannabis may cause changes in the human body’s epigenome, a study of over 1,000 adults suggests. The epigenome functions like a set of switches, activating or deactivating genes to change how our bodies function.

“We observed associations between cumulative marijuana use and multiple epigenetic markers across time,” says Lifang Hou, a preventative medical doctor and epidemiologist from Northwestern University Feinberg School of Medicine.

Cannabis is a commonly used substance in the United States, with 49 percent of people trying it at least once, Hou and a team of US researchers report in their published paper. Some US states and other countries have made it legal, but we still don’t fully understand its effects on our health.

Jul 21, 2023

Astronomers Break the “BOAT” — Decoding the Mystery of the Universe’s Brightest Explosion

Posted by in categories: cosmology, physics

Last year, telescopes around the world registered the brightest cosmic explosion of all time. Astrophysicists can now explain what made it so dazzling.

Few cosmic explosions have attracted as much attention from space scientists as the one recorded on October 22 last year and aptly named the Brightest of All Time (BOAT). The event, produced by the collapse of a highly massive star and the subsequent birth of a black hole.

A black hole is a place in space where the gravitational field is so strong that not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.

Jul 21, 2023

Researchers make progress toward a new environmentally friendly nanomaterial that could revolutionize electronic devices

Posted by in categories: chemistry, nanotechnology, solar power, sustainability

A team of researchers from the Instituto de Carboquímica of the Spanish National Research Council (CSIC) has made a remarkable step forward in the development of efficient and sustainable electronic devices. They have found a special combination of two extraordinary nanomaterials that successfully results in a new hybrid product capable of turning light into electricity, and vice-versa, faster than conventional materials.

The research is published in the journal Chemistry of Materials.

This consists of a one-dimensional conductive polymer called polythiophene, ingeniously integrated with a two-dimensional derivative of graphene known as graphene oxide. The unique features exhibited by this hybrid material hold incredible promise for improving the efficiency of optoelectronic devices, such as smart devices screens, and solar panels, among others.