Menu

Blog

Page 27

Dec 23, 2024

Organic electro-scattering antenna: Wireless and multisite probing of electrical potentials with high spatial resolution

Posted by in categories: biotech/medical, materials

Monitoring electrical potentials with high recording site density and micrometer spatial resolution in liquid is critical in biosensing. Organic electronic materials have driven remarkable advances in the field because of their unique material properties, yet limitations in spatial resolution and recording density remain. Here, we introduce organic electro-scattering antennas (OCEANs) for wireless, light-based probing of electrical signals with micrometer spatial resolution, potentially from thousands of sites. The technology relies on the unique dependence of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate light scattering properties to its doping level. Electro-optic characteristics of individual antennas varying in diameters and operating voltages were systematically characterized in saline solution. Signal-to-noise ratios up to 48 were achieved in response to 100-mV stimuli, with 2.5-mV detection limits. OCEANs demonstrated millisecond time constants and exceptional long-term stability, enabling continuous recordings over 10 hours. By offering spatial resolution of 5 μm and a recording density of 4 × 106 cm−2, OCEANs unlock new readout capabilities, potentially accelerating fundamental and clinical research.


Sci. Adv. 10, eadr8380 (2024). DOI:10.1126/sciadv.adr8380

Select the format you want to export the citation of this publication.

Dec 23, 2024

One of the world’s most active volcanoes — Hawaii’s Kilauea — is erupting again

Posted by in category: futurism

Lava is bubbling through the crust of one of the world’s most active volcanoes, which is Kilauea, on Hawaii’s Big Island.

Dec 23, 2024

Grapes of math: Ordinary fruit enhances performance of quantum sensors

Posted by in categories: mathematics, quantum physics

Macquarie University researchers have demonstrated how ordinary supermarket grapes can enhance the performance of quantum sensors, potentially leading to more efficient quantum technologies.

The study, published in Physical Review Applied on 20 December 2024, shows that pairs of grapes can create strong localized magnetic field hotspots of microwaves which are used in quantum sensing applications—a finding that could help develop more compact and cost-effective quantum devices.

“While previous studies looked at the causing the plasma effect, we showed that grape pairs can also enhance magnetic fields, which are crucial for quantum sensing applications,” says lead author Ali Fawaz, a quantum physics Ph.D. candidate at Macquarie University.

Dec 23, 2024

Superconductivity for sustainability: a new superconducting link for the High-Luminosity LHC

Posted by in categories: particle physics, space, sustainability

The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, is also the largest single machine operating in the world today that uses superconductivity. The proton beams inside the LHC are bent and focused around the accelerator ring using superconducting electromagnets. These electromagnets are built from coils, made of niobium–titanium (Nb–Ti) cables, that have to operate at a temperature colder than that of outer space in order to be superconducting. This allows the current to flow without any resistance or loss of energy. The High-Luminosity LHC (HL-LHC), an upgrade of the LHC, will for the first time feature innovative electrical transfer lines known as the “Superconducting Links”

Recently, CERN’s SM18 magnet test facility witnessed the successful integration of the first series of magnesium diboride superconducting cables into a novel, flexible cryostat. Together with high-temperature superconducting (HTS) magnesium diboride (MgB2) cables, they will form a unique superconducting transfer line to power the HL-LHC inner triplet magnets. The triplets are the focusing magnets that focus the beam, right before collisions, to a diameter as narrow as 5 micrometres.

Dec 23, 2024

Dr. Nina Siragusa — Merck KGaA Darmstadt, Germany — Bridging Science And Nature To Shape Tomorrow

Posted by in categories: bioengineering, biotech/medical, science

Bioconvergence — Bridging Science And Nature To Shape Tomorrow — Dr. Nina Siragusa Ph.D. — Merck KGaA, Darmstadt, Germany


#NinaSiragusa #MerckGroup #Darmstadt.

Continue reading “Dr. Nina Siragusa — Merck KGaA Darmstadt, Germany — Bridging Science And Nature To Shape Tomorrow” »

Dec 23, 2024

Making history: Solar probe set to fly through the Sun’s atmosphere

Posted by in category: space

NASA’s Parker Solar Probe is set to achieve its most dangerous feat yet tomorrow, December 24, 2024. After a six-year journey of spiraling closer to the star at the heart of our solar system, the spacecraft is expected to come within 3.8 million miles of the Sun’s surface.

This tiny distance in cosmic terms lets scientists capture a new type of information, revealing secrets about solar winds, extreme heat, and magnetic fields.

Engineers have spent years carefully adjusting Parker’s flight path using multiple Venus gravity assists. These flybys reshape the spacecraft’s orbit and tighten its looping path around the Sun.

Dec 23, 2024

AI-designed, monolithic aerospike engine successfully hot-fired

Posted by in category: robotics/AI

Showing how far AI engineering has come, a new aerospike engine burning oxygen and kerosene capable of 1,100 lb (5,000 N) of thrust has successfully been hot-fired for 11 seconds. It was designed from front to back using an advanced Large Computational Engineering Model.

Designing and developing advanced aerospace engines is generally a complicated affair taking years of modeling, testing, revision, prototyping, rinsing and repeating. With their ability to discern patterns, carry out complex analysis, create virtual prototypes, and run models thousands of times, engineering AIs are altering the aerospace industry in some surprising ways – provided, of course, they are properly programmed and trained.

Otherwise, it’s garbage in, garbage out, which has been the Golden Rule of computers since they ran on radio valves and electromechanical relays.

Dec 23, 2024

Timeline of life’s evolution extended by nearly 1.5 billion years

Posted by in category: evolution

Virginia Tech’s study traces early eukaryotic evolution, highlighting life’s diversification since 2 billion years ago.

Dec 23, 2024

AI That Can Design Life’s Machinery From Scratch Had a Big Year. Here’s What Happens Next

Posted by in categories: bioengineering, biotech/medical, robotics/AI

One used AI to dream up a universe of potential CRISPR gene editors. Inspired by large language models—like those that gave birth to ChatGPT—the AI model in the study eventually designed a gene editing system as accurate as existing CRISPR-based tools when tested on cells. Another AI designed circle-shaped proteins that reliably turned stem cells into different blood vessel cell types. Other AI-generated proteins directed protein “junk” into the lysosome, a waste treatment blob filled with acid inside cells that keeps them neat and tidy.

Outside of medicine, AI designed mineral-forming proteins that, if integrated into aquatic microbes, could potentially soak up excess carbon and transform it into limestone. While still early, the technology could tackle climate change with a carbon sink that lasts millions of years.

It seems imagination is the only limit to AI-based protein design. But there are still a few cases that AI can’t yet fully handle. Nature has a comprehensive list, but these stand out.

Dec 23, 2024

Einstein Meets Newton: Scientists Demonstrate New Aspect of Wave-Particle Duality

Posted by in categories: computing, encryption, quantum physics

Linköping University’s experiment confirms a key theoretical link between quantum mechanics and information theory, highlighting future implications for quantum technology and secure communication.

Researchers at Linköping University and their collaborators have successfully confirmed a decade-old theory linking the complementarity principle—a fundamental concept in quantum mechanics—with information theory. Their study, published in the journal Science Advances, provides valuable insights for understanding future quantum communication, metrology, and cryptography.

“Our results have no clear or direct application right now. It’s basic research that lays the foundation for future technologies in quantum information and quantum computers. There’s enormous potential for completely new discoveries in many different research fields,” says Guilherme B Xavier, researcher in quantum communication at Linköping University, Sweden.

Page 27 of 12,259First2425262728293031Last