Researchers at the University of Oklahoma led a study recently published in Science Advances that proves the principle of using spatial correlations in quantum entangled beams of light to encode information and enable its secure transmission.
Light can be used to encode information for high-data rate transmission, long-distance communication and more. But for secure communication, encoding large amounts of information in light has additional challenges to ensure the privacy and integrity of the data being transferred.
Alberto Marino, the Ted S. Webb Presidential Professor in the Homer L. Dodge College of Arts, led the research with OU doctoral student and the study’s first author Gaurav Nirala and co-authors Siva T. Pradyumna and Ashok Kumar. Marino also holds positions with OU’s Center for Quantum Research and Technology and with the Quantum Science Center, Oak Ridge National Laboratory.