Menu

Blog

Page 11877

Dec 20, 2012

I Thank CERN for their Having Switched-off the LHC eleven Days ahead of Schedule

Posted by in categories: existential risks, particle physics

See http://www.oekonews.at/index.php?mdoc_id=1075986

Dec 19, 2012

The Fabulous Spaceport Colorado (Part 4)

Posted by in categories: business, economics, engineering, geopolitics, philosophy, policy, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 4.

In Part 4, I dwell more into the economic concepts necessary for a spaceports’ long term success. The single most important concept one has to understand with any type of port, airport, seaport and spaceports is the concept of the hinterland economy. The hinterland economy is the surrounding local economy that the port services, either by population demographics, commercial & industrial base or transportation hub per its geographic location.

The Sweden-America model, like Westport Malaysia requires that a hinterland economy will eventually be built close to the port. Westport’s then Vice-Chairman of the Board, Gnanalingam (we called him ‘G’) whom I reported to, had the foresight, the influence and the connections within the Malaysian public sector, to encourage the infrastructure development within Pulah Indah and the neighboring locations.

The hinterland is critical to the success of the port. Therefore the key to a port’s success is the clarification of the term ‘local’ in the definition of the concept of the hinterland. When I joined Westport in 1995, a hinterland was defined as within approximately a 15 mile (24 km) radius of the port. In my opinion that was too small a segment of the economy to facilitate the success of Westport. That definition did not match up with Westport’s ambition to be a world class seaport and transshipment hub that could give PSA (Port Authority of Singapore, then largest container port in the world) a run for its money.

Continue reading “The Fabulous Spaceport Colorado (Part 4)” »

Dec 18, 2012

Beamed Energy Myth

Posted by in category: sustainability

I was recently told by a person commenting on another blog that beamed energy is a myth. The commenter claimed that Fusion energy would be a more likely future development. I cited Criswell and Zehner and gave back.I am a very progressive eco friendly person and I have wondered many years if there is some energy industry conspiracy that keeps clean power from becoming a reality. The only conspiracy is human greed influencing exactly how we live on this planet.

Zehner’s book spells out the situation in a unique way; he calls it as he see’s it and the numbers cannot be spun too much because he presents the basic foundations of what it takes to make the electricity flow. Criswell is more biased toward his proposal even though it is peer reviewed and has all the math equations.

What Criswell is proposing is a river of energy traveling from vast collectors on the surface of the Moon to Earth Geostationary orbit and from there down to surface recievers of several square kilometers.

What fusion proposes is to keep a sustained nuclear reaction going without the use of a sun. The other way to generate useful energy from a fusion reaction is to actually explode H-bombs underground and harvest the resulting heat and nuclear products. The only useful work that can be had from a H-bomb besides this kind of excavation is to use it as a propulsion device for spaceships.

Continue reading “Beamed Energy Myth” »

Dec 18, 2012

The Fabulous Spaceport Colorado (Part 3)

Posted by in categories: business, defense, economics, education, engineering, geopolitics, policy, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 3.

In my last post I had mentioned that there were 2 business models for spaceports. I’ll name the first Sweden-America model after spaceports Sweden & America. The second, I’ll name Colorado-Singapore model after (yet to be) spaceports Colorado & Singapore.

The Sweden-America model basic premise is that spaceport ought to be built in remote locations, and then a hinterland economy is eventually built around the spaceport. This approach was originally driven by safety concerns and the need for a rocket range or vacant land for launching rockets to crash back to.

The basic premise of the Colorado-Singapore model is that launch vehicles are safe and that spaceports ought to be built close to centers of commerce and intermodal transportation networks. That is, spaceports are to be built in an existing hinterland economy.

Continue reading “The Fabulous Spaceport Colorado (Part 3)” »

Dec 16, 2012

The Fabulous Spaceport Colorado (Part 2)

Posted by in categories: business, defense, economics, engineering, policy, scientific freedom, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 2.

What is a spaceport?

Wikipedia gives a very broad definition of a spaceport, that anything and everything that is used to launch vehicles into orbit, space and interplanetary missions are now termed spaceports. ICBM sites are termed launch sites. There is, however, a distinction between a military site and a commercial site. In the aviation world a military site is termed an ‘airbase’ while a commercial civilian site is termed an ‘airport’. Similarly in the marine world the respective terms are ‘naval base’ and ‘seaport’. In that vein there are ‘spacebases’ and ‘spaceports’. So bear in mind that not everything that is labeled a ‘spaceport’ is one.

As far as I can remember the term ‘spaceport’ caught the public’s imagination only recently with the advent of Spaceport America at Las Cruces, NM. So let’s clarify. A spaceport is port for launching vehicles into suborbital, orbital and interplanetary space whose primary mission is to support and manage commercial activities, not military, not government sponsored launches. And therefore, in the United States there are only 10 existing or proposed spaceports. They are (1)Mid-Atlantic Regional Spaceport, Wallops Island, VA (2)Cecil Field Spaceport, Jacksonville, FL (3)Spaceport Florida, Cape Canaveral (4)Spaceport Oklahoma, Burns Flat, OK (5)Spaceport America, Las Cruces, NM (6)Mojave Air and Spaceport, Mojave, CA (7) California Spaceport, Vandenberg Air Force Base, Lompac, CA (8)Kodiak Launch Complex, Kodiak Island, AK, (9) Spaceport Colorado, Watkins, CO and (10)Spaceport Hawaii, HI.

Continue reading “The Fabulous Spaceport Colorado (Part 2)” »

Dec 15, 2012

Titan Water Pressure

Posted by in category: space

I commented on another blog recently about visiting Titan;

I do not know the pressure in these possible liquid oceans. But if it is, for example, 2 or 3 times that of the Marianas Trench then it is certainly a daunting proposition to explore them with human crewed submarines.

Tremendous pressure would mean transporting a titanium sphere several feet thick there. Not an incredible solution if you make it out of Lunar Titanium and Lunar Solar Power.
After reading Ozzie Zhener’s Green Illusions and the Dan Criswell Lunar Solar Power concept web entries I am becoming skeptical about any other possible approach having any relevance in my lifetime. I turned fifty recently and though they sent John Glenn on a mission, I am not confident of any migration into space anytime soon. This is a case of a 7 year old boy watching Star Trek and believing it might be something like this when I got as old as Bill Shatner was.….is.
If you trouble shoot the problem and use a decision tree to find solutions from a survey of available technology it becomes clear that the contender technologies are either available or readily available in the form of improved copies of half century old prototypes.
If you want to launch a program of under ice manned submarine expeditions to the outer planet moons you would have to start with a huge program of super heavy lift vehicles. This may sound expensive but unlike any other existing approach this single inflexible path has the potential of a hundred thousand fold return on investment.
By landing payloads at the lunar polar ice deposits, the exploitation of Lunar Solar Power resources can begin. I want Greenpeace, and every environmental conservation group that exists to understand that they can have there every dream come true if they ruthlessly exploit the solar energy striking the Moon’s surface. It should be understood that the Moon is dead. It is kind of like Nietsche saying God is dead and God then saying Nietsche is dead; do not worry about polluting the Moon- it is dead.
Once there is Lunar Solar Power to melt ore then large structures can be created. These gargantuan solar energy devices will rapidly cover vast swathes of the lunar surface. The more energy that pours into the metal shops the more energy will be produced for new metal shops. After the energy is available come the microwave transmitting antennae fields. Finally come the space power relay battle stations; these must launch to Earth geostationary orbit. Ever larger battle stations from the Moon will park themselves above a certain spot on the Earth where receiving dishes the size of entire valleys are being built. At some point done the road a river of clean electricity begins to flow from the Moon to Earth.
This rainbow bridge of microwave energy from the surface all the way up to geostationary orbit means powering a beam propulsion launch system of several thousand Isp with power all the way from the Moon. How quickly this airline to space begins operation depends entirely on the resources put into it. Exactly what proportion of this electricity shall be dedicated to establishing new worlds in space?
Though it seems impossible for us to imagine, after every single human being on Earth has a very high western standard of living, what will we do with the excess power? If that Lunar Solar Power is geometrically increasing and feeding itself by adding ever increasing and phenomenal amounts of electricity will it be shut down at that point?
I believe when the full of potential of space is explained to the public and they are convinced then no one will stop a geometric progression of Lunar Solar Power to facilitate new projects. The next big project will be constructing large structures in space at the nearest Libration point. Proposed in 1929 the Bernal Sphere may be a simple structure to melt with microwaves in zero gravity and form into a miles- in-diameter hollow sphere. How many miles in diameter is the question.
When the optimum form and thicknesses of the shell or shells-inside-the shells is determined this will determine the diameter of the sphere. Spheres 20 or 30 miles in diameter have the prospect of being a multi-purpose vehicle; Not only can they act as power relay stations but they can support populations of at least thousands in deep space. Propelled by H-bombs this first product of the industry of the Moon may fill many roles from the start a chain of these hollow moons will stretch out in solar orbit from the Earth.
Human beings have a lot of problem with scale. It takes a certain open mindedness to embrace construction projects of such vast scales. But we have only to look at the pyramids in Egypt to understand that large goals have been met since civilization has been in existence. The numbers tell us this chain of hollow moons can contain larger and larger populations as they grow in sized. If it is actually possible to feed materials into a solar furnace and blow up balloons several miles in diameter then the next factory to build may be around Mercury. Greenpeace may have trouble getting tourists to visit the abandoned Earth.
If all else fails, there is sports. Decades ago I read a short story, called “Moonball” I think, and it had professional sports played in superdomes under the Lunar Surface and televised to Earth.
We could have only females of chilbearing age allowed on the Moon and have them play sports. So if there is an engineered pathogen or the planet killer comet or asteroid hits or a super-volcano lights off the next ice age, we will always have our amazon women on the Moon to save our species.

Dec 15, 2012

The Fabulous Spaceport Colorado (Part 1)

Posted by in categories: business, defense, engineering, finance, geopolitics, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space.

On April 19, 2012, Gov. John Hickenlooper signed a bill that limited a spaceflight entity’s liability for spaceflight participants and paved the way for Spaceport Colorado’s development. The Front Range Airport Authority situated on 3,900 acres will allocate 900 acres towards the development and construction of Spaceport Colorado and ancillary facilities. The next steps are the completion of an environmental assessment, and feasibility and marketing study. This is expected to be completed by end of 2013.

In the 1995–96 I was Head of Corporate Planning at Westport, a $1 billion seaport infrastructure project in Malaysia, where I created and deployed the 7-hour port strategy, streamlined financial controls, container handling and container tariffs, reducing incoming (wharf to gate) dwell time to zero hours compared to the then world’s largest container port, Port Authority of Singapore’s (PSA) 18-hours. Westport was able to grow substantially, to the point where, in 2011, Westport handled 6.4 million TEUs compared to PSA’s 29.9 million TEUs. (TEU = Twenty-foot Equivalent Units or half a container)

So it caught my attention when Dennis Heap said Spaceport Colorado will be 33 miles (53 km) east of the city of Denver and about 6 miles (10 km) south of Denver International Airport (DIA).

Continue reading “The Fabulous Spaceport Colorado (Part 1)” »

Dec 15, 2012

OPEN DIALOG WITH STEPHEN HAWKING ————————————————————————————— “Metabolizing it is at Rest”: Heraclitus’ Eternally Recycling Cosmos Recovered

Posted by in category: physics

“Metaballon anapaúetai” was the original 2-word phrase. Since the physical science of thermodynamics knows only one time’s arrow, Heraclitus appeared outdated for 1 ½ centuries.

Recently though, a second fundamental time’s arrow was found in nature. It defines cyodynamics, a full-fledged sister discipline to thermodynamics (cryós = cold, thermós = hot). Both jointly form the subject matter of statistical mechanics. The new subfield of cryodynamics applies whenever the forces acting between the particles in question are attractive. Thermodynamics applies when they are predominantly repulsive. Hot plasmas, for example, are governed by both disciplines – which fact puts fusion technology on a new promising basis.

The new combined discipline re-enables an eternally recycling perpetual-motion cosmos. The implied chaos-theoretic combined mixing and unmixing process, found by Anaxagoras to be implicit in Heraclitus‘ work, is thereby confirmed.

A third name needs to be added though, Einstein’s. The giant perpetual-motion machine would not work in the absence of general relativity forming the third element.

Continue reading “OPEN DIALOG WITH STEPHEN HAWKING --------------------------------------------------------------------------------------- ‘Metabolizing it is at Rest’: Heraclitus’ Eternally Recycling Cosmos Recovered” »

Dec 14, 2012

Europa Report Reality Base

Posted by in category: space

I was told once the secret to a good movie is suspension of disbelief.

This is a hard nut to crack for anyone making a good sci-fi movie because the closer you get to suspending that disbelief the farther away you get from what is entertaining and familiar to moviegoers.

For the true space geek sci-fi movies invariably disappoint. Anyone familiar with the basics of space flight knows things about gravity and physics that ruin any possible suspension of disbelief in these movies.

We will see how close this one comes to addressing things like:

Continue reading “Europa Report Reality Base” »

Dec 14, 2012

The Kline Directive: Technological Feasibility (3b)

Posted by in categories: cosmology, defense, economics, education, engineering, general relativity, particle physics, physics, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In a previous post on Technological Feasibility I had stated that a quick and dirty model shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

That is, at the current rate of technological innovation we could as a civilization reach light speed in about 140 years. More importantly we could not even reach anywhere near that within the next 100 years. Our capability would be 6.3% of c.

The Lorentz-Fitzgerald transformation informs us light speed would require an infinite amount of energy (i.e. more than there is in the Universe!), thereby highlighting the weaknesses in these types of technological forecasting methods. But these models still serve a purpose. They provide some guidance as to what is possible and when. The operative word is guidance.

Continue reading “The Kline Directive: Technological Feasibility (3b)” »