Menu

Blog

Page 10709

Jul 26, 2016

Manned multicopter part 10, FINALLY UP & FLYING!

Posted by in category: futurism

[http://amazingdiyprojects.com/]

Read more

Jul 26, 2016

Automated Large-Scale Restaurant

Posted by in categories: food, robotics/AI

This concept automated restaurant will deliver you food in under a minute.

Read more

Jul 26, 2016

Horizon: The Future of Public Transport

Posted by in category: transportation

This is an amazing concept!

By: Hashem Al-Ghaili

Read more

Jul 26, 2016

Researchers have figured out how to zap people’s brains to make them smarter

Posted by in category: neuroscience

Are you ready for advance brain stimulation because it is getting a whole closer to reality.


You can wire up your brain and make it easier to focus, improve your memory, and boost learning ability. But doing so takes an electric or magnetic pulse.

Read more

Jul 26, 2016

Genetic factors are responsible for creating anatomical patterns in the brain cortex

Posted by in categories: evolution, genetics, neuroscience

Studies are showing that anatomical patterning found in the brain’s cortex may be controlled by genetic factors.


The highly consistent anatomical patterning found in the brain’s cortex is controlled by genetic factors, reports a new study by an international research consortium led by Chi-Hua Chen of the University of California, San Diego, and Nicholas Schork of the J. Craig Venter Institute, published on July 26 in PLOS Genetics.

The human brain’s wrinkled cerebral cortex, which is responsible for consciousness, memory, language and thought, has a highly similar organizational pattern in all individuals. The similarity suggests that genetic factors may create this pattern, but currently the extent of the role of these factors is unknown. To determine whether a consistent and biologically meaningful pattern in the cortex could be identified, the scientists assessed brain images and genetic information from 2,364 unrelated individuals, brain images from 466 twin pairs, and transcriptome data from six postmortem brains.

They identified very consistent patterns, with close genetic relationships between different regions within the same brain lobe. The frontal lobe, which has the most complexity and has experienced the greatest expansion throughout the brain’s evolution, is the most genetically distinct from the other lobes. Their results also suggest potential functional relationships among different cortical brain regions.

Read more

Jul 26, 2016

Literature and film help teach students to understand the brain

Posted by in categories: entertainment, neuroscience

UCLA freshman cluster course combines anatomy, history, philosophy and humanities to provide an interdisciplinary approach to studying neuroscience.

Read more

Jul 26, 2016

Can a Brain Scan Tell What You’re Thinking? — Pacific Standard

Posted by in categories: mathematics, neuroscience, space travel

Ever really wanted to know what folks truly are thinking about?


A new experiment advances the idea that brain scans can teach us something about how the human mind works.

By Nathan Collins

Continue reading “Can a Brain Scan Tell What You’re Thinking? — Pacific Standard” »

Jul 26, 2016

Most people are too scared to use brain chips and synthetic blood to improve performance

Posted by in categories: bioengineering, biotech/medical, computing, military, neuroscience, singularity

On the path towards Singularity — I believe that this is an individual choice. However, to remain relevant and competitive in industry we may see a day when folks will require this type of enhancement to compete, perform in military operations, etc.


The researchers carried out a survey of more than 4,700 US adults.

Continue reading “Most people are too scared to use brain chips and synthetic blood to improve performance” »

Jul 26, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices

Posted by in categories: particle physics, quantum physics

Finally, portable thermal imaging devices could be here soon.


The primary source of infrared radiation is heat—the radiation produced by the thermal motion of charged particles in matter, including the motion of the atoms and molecules in an object. The higher the temperature of an object, the more its atoms and molecules vibrate, rotate, twist through their vibrational modes, the more infrared radiation they radiate. Because infrared detectors can be “blinded” by their own heat, high-quality infrared sensing and imaging devices are usually cooled down, sometimes to just a few degrees above absolute zero. Though they are very sensitive, the hardware required for cooling renders these instruments less-than-mobile, energy-inefficient and limits in-the-field applications.

A paper published this week in the journal Optics Express, from The Optical Society (OSA), describes a new type of portable, field-friendly, mid-infrared detector that operates at room temperature. Room-temperature operation, notes Andreas Harrer of the TU-Wien Center for Micro- and Nanostructures, Austria and the first author of the paper, “is essential for detectors to be energy-efficient enough for portable and handheld applications. We want to pave the way to an infrared-detection technology which is flexible in design and meets all requirements for compact integrated field-applicable detection systems.”

Continue reading “Pixel-array quantum cascade detector paves the way for portable thermal imaging devices” »

Jul 26, 2016

Quantum dot photosensitizers as a new paradigm for photochemical activation

Posted by in categories: chemistry, quantum physics, solar power, sustainability

Interesting work on solar energy and Q-dot photosensitizers.


Interfacial triplet-triplet energy transfer is used to significantly extend the exciton lifetime of cadmium selenide nanocrystals in an experimental demonstration of their molecular-like photochemistry.

Continue reading “Quantum dot photosensitizers as a new paradigm for photochemical activation” »