Sep 27, 2016
Hackers created a $30 DIY version of the EpiPen
Posted by Shane Hinshaw in categories: biotech/medical, health
https://youtube.com/watch?v=ldFFJRdhVs8
You can make your own medical device or pay full price for the patented product.
https://youtube.com/watch?v=ldFFJRdhVs8
You can make your own medical device or pay full price for the patented product.
These days there are a quite a few high-tech ways to keep our oral hygiene in check, from toothbrushes that track your technique to smart floss dispensers that encourage healthy habits. Mint is the latest connected solution to hit bathrooms and beyond, and is said to detect signs of gum disease and poor oral hygiene on your breath in the space of a few seconds.
Developed by Breathometer, the same company behind the smartphone-based breathalyzer we covered back in 2013, Mint is small handheld device that hooks up with iOS and Android smartphones to check in on the state of affairs inside your mouth. After a successful Indiegogo campaign in March 2015 and some good attention at the CES conference that same year, the device has finally started shipping today.
A sensor array inside the device measures the volatile sulfur compounds (VSCs) in your breath. Studies have shown these to be key culprits behind bad breath, but their presence might do more than send your significant other running in the other direction. They can also be indicative of gum disease and poor oral health.
When a malignant tumor invades the body, immune cells rush to the site to begin to fight it. When that same tumor spreads throughout the body, however, the cancer cells become invisible to our immune systems and can metastasize unencumbered by our natural defenses. Researchers out of the University of British Columbia (UBC) are on to cancer’s tricky cloaking mechanism though, and their discovery could lead to new approaches to attacking the disease.
“We discovered a new mechanism that explains how metastatic tumours can outsmart the immune system and we have begun to reverse this process so tumours are revealed to the immune system once again,” said Wilfred Jefferies, senior author of a new study in Scientific Reports and a professor of medical genetics and microbiology and immunology at UBC.
The discovery hinges on a protein called interleukein-33, or IL-33 that’s present in primary tumors. When the tumors emit this protein, it causes another protein complex known as the major histocompatibility complex (MHC) to activate, which tags the cancer cells as a bad presence in the body and guides the immune system to get to work destroying them.
Komatsu’s latest autonomous truck fully embraces the notion of unmanned operation by ditching the cabin and adopting a design that optimizes load distribution and doesn’t distinguish between forwards and backwards.
Komatsu began trials of its Autonomous Haulage Systems (AHS) in a partnership with mining company Rio Tinto in 2008, and since then the technology has hauled hundreds of millions of tonnes of material in Chile and Australia’s Pilbara region.
Continue reading “Komatsu’s robotic mining truck completely dumps the driver” »
Now, intriguing calculations from a research team at the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and reported this week in Physics of Plasmas, from AIP Publishing, explain the production and dynamics of electrons and positrons from ultrahigh-intensity laser-matter interactions. In other words: They’ve calculated how to create matter and antimatter via lasers.
Strong electric fields cause electrons to undergo huge radiation losses because a significant amount of their energy is converted into gamma rays — high-energy photons, which are the particles that make up light. The high-energy photons produced by this process interact with the strong laser field and create electron-positron pairs. As a result, a new state of matter emerges: strongly interacting particles, optical fields, and gamma radiation, whose dynamics are governed by the interplay between classical physics phenomena and quantum processes.
A key concept behind the team’s work is based on the quantum electrodynamics (QED) prediction that “a strong electric field can, generally speaking, ‘boil the vacuum,’ which is full of ‘virtual particles,’ such as electron-positron pairs,” explained Igor Kostyukov of IAP RAS. “The field can convert these types of particles from a virtual state, in which the particles aren’t directly observable, to a real one.”
In a perspective article published Sept. 26 online in the Proceedings of the National Academy of Sciences, a team of scientists at UT Dallas’ Alan G. MacDiarmid NanoTech Institute describes the path to developing a new class of artificial muscles made from highly twisted fibers of various materials, ranging from exotic carbon nanotubes to ordinary nylon thread and polymer fishing line.
Because the artificial muscles can be made in different sizes and configurations, potential applications range from robotics and prosthetics to consumer products such as smart textiles that change porosity and shape in response to temperature.
“We call these actuating fibers ‘artificial muscles’ because they mimic the fiber-like form-factor of natural muscles,” said Dr. Carter Haines, associate research professor in the NanoTech Institute and co-lead author of the PNAS article, with research associate Dr. Na Li. “While the name evokes the idea of humanoid robots, we are very excited about their potential use for other practical applications, such as in next-generation intelligent textiles.” Science Based on Ancient Art.
Lmao.
Scientists working in Ecuador have discovered a new species of ant in the most unusual of places – the vomit of a bright orange ‘devil frog’ known as the diablito.
So far, we don’t know much about the new tropical ant, which hae elongated mouthparts (possibly to help catch food), and has been given the formal name Lenomyrmex hoelldobleri, in tribute to German biologist and ant expert Bert Hölldobler.
Continue reading “Scientists just discovered a new species of ant — in frog vomit” »
A NASA-funded study has solved a longstanding mystery over the origin of X-rays that permeate space in our Solar System, but in doing so, it’s also discovered an entire group of high-energy X-rays that can’t be explained.
The research comes from a new analysis of data recorded by NASA’s DXL rocket mission, which took flight in 2012 to settle the question of what creates these low-energy X-ray emissions – called the diffuse soft X-ray background – in our corner of the galaxy.
At the time, there were two central hypotheses. X-ray emissions were known to come from solar wind, but scientists also thought they might originate from what’s called the Local Hot Bubble – a theorised region of hot gas that envelops our Solar System. But which was correct?
Out of all the pressures we face in our everyday lives, there’s no denying that the nature of time has the most profound effect. As our days, weeks, months, and years go by, time moves from past to present to future, and never the other way around.
But according to the physics that govern our Universe, the same things will occur regardless of what direction time is travelling in. And now physicists suggest that gravity isn’t strong enough to force every object in the Universe into a forward-moving direction anyway.
So does time as we know it actually exist, or is it all in our heads? First off, let’s run through a little refresher about the so-called arrow of time.
Continue reading “Time might only exist in your head, say physicists” »