Menu

Blog

Archive for the ‘solar power’ category: Page 16

Mar 2, 2024

The Future of Energy — Scientists Unveil Roadmap for Bringing Perovskite/Silicon Tandem Solar Cells to Market

Posted by in categories: solar power, sustainability

Researchers at King Abdullah University of Science and Technology (KAUST) have developed a comprehensive plan to introduce perovskite/silicon tandem solar cells into the marketplace, setting the stage for a world energized by widespread, cost-effective renewable energy, both in Saudi Arabia and globally.

The authors of the article, published in esteemed journal Science, include Prof. Stefaan De Wolf and his research team at the KAUST Solar Center. The team is working on improving solar efficiency to meet Saudi Arabia’ solar targets.

Perovskite/silicon tandem technology combines the strengths of two materials – perovskite’s efficient light absorption and silicon’s long-term stability – to achieve record-breaking efficiency. In 2023, the De Wolf laboratory reported two world records for power conversion efficiency, with five achieved globally in the same year, showing rapid progress in perovskite/silicon tandem technology.

Mar 2, 2024

A strategy to further boost the efficiency of copper indium gallium selenide solar cells

Posted by in categories: solar power, sustainability

Until recently, chalcopyrite-based solar cells have achieved a maximum energy conversion efficiency of 23.35%, as reported in 2019 by Solar Frontier, a former Solar Energy company based in Japan. Further boosting this efficiency, however, has so far proved challenging.

Researchers at Uppsala University and at the First Solar European Technology Center AB (former Evolar AB) in Sweden recently attained a higher efficiency of 23.64% in chalcopyrite-based . This efficiency, reported in Nature Energy, was achieved using two primary techniques, namely high-concentration silver alloying and steep back-contact gallium grading.

“A primary objective of our study was to increase the efficiency of CIGS-based thin-film solar cells to ultimately lower the price per Watt-peak of corresponding large-scale modules,” Jan Keller, first author of the paper, told Phys.org. “Our work makes use of the findings from many research groups around the world, obtained during the last decades.”

Mar 1, 2024

Perovskite’s nanoscale secrets revealed in solar breakthrough

Posted by in categories: nanotechnology, solar power, sustainability

The key revelation from this study is the dual impact of the passivation process.


MIT’s research is set to make solar panels lighter, cheaper, and more efficient by addressing key challenges associated with perovskite solar panels.

Mar 1, 2024

A new theoretical development clarifies water’s electronic structure

Posted by in categories: biological, chemistry, physics, solar power, sustainability

There is no doubt that water is significant. Without it, life would never have begun, let alone continue today—not to mention its role in the environment itself, with oceans covering over 70% of Earth.

But despite its ubiquity, liquid water features some electronic intricacies that have long puzzled scientists in chemistry, physics, and technology. For example, the , i.e., the energy stabilization undergone by a free electron when captured by water, has remained poorly characterized from an experimental point of view.

Even today’s most accurate electronic structure has been unable to clarify the picture, which means that important physical quantities like the energy at which electrons from external sources can be injected in liquid water remain elusive. These properties are crucial for understanding the behavior of electrons in water and could play a role in , environmental cycles, and technological applications like solar energy conversion.

Feb 28, 2024

Study unlocks nanoscale secrets for designing next-generation solar cells

Posted by in categories: engineering, life extension, nanotechnology, solar power, sustainability

Perovskites, a broad class of compounds with a particular kind of crystal structure, have long been seen as a promising alternative or supplement to today’s silicon or cadmium telluride solar panels. They could be far more lightweight and inexpensive, and could be coated onto virtually any substrate, including paper or flexible plastic that could be rolled up for easy transport.

In their efficiency at converting sunlight to electricity, perovskites are becoming comparable to silicon, whose manufacture still requires long, complex, and energy-intensive processes. One big remaining drawback is longevity: They tend to break down in a matter of months to years, while silicon can last more than two decades. And their efficiency over large module areas still lags behind silicon.

Now, a team of researchers at MIT and several other institutions has revealed ways to optimize efficiency and better control degradation, by engineering the nanoscale structure of perovskite devices.

Feb 27, 2024

Swedish scientists smash solar cell efficiency ‘world record’

Posted by in categories: solar power, sustainability

CIGS solar cells can also be used a bottom layer in the tandem solar cell design helping reduce production costs.

Researchers at Uppsala University in Sweden have created a new world record by designing a CIGS solar cell with 23.64 percent energy conversion efficiency.

Feb 26, 2024

Researchers set new world record for CIGS solar cells

Posted by in categories: solar power, sustainability

Uppsala University is the new world record holder for electrical energy generation from copper indium gallium selenide (CIGS) solar cells. The new world record is 23.64% efficiency. The measurement was made by an independent institute, and the results are published in Nature Energy.

The record results from a collaboration between the company First Solar European Technology Center (formerly known as Evolar) and solar cell researchers at Uppsala University.

“The measurements that we have made ourselves for this solar cell and other solar cells produced recently are within the margin of error for the independent measurement. That measurement will also be used for an internal calibration of our own measurement methods,” says Marika Edoff, Professor of Solar Cell Technology at Uppsala University, who is responsible for the study.

Feb 25, 2024

Physicists Develop New Significantly More Efficient Solar Cell

Posted by in categories: computing, physics, solar power, sustainability

Physicists at Paderborn University have enhanced solar cell efficiency significantly using tetracene, an organic material, based on complex computer simulations. They discovered that defects at the tetracene-silicon interface boost energy transfer, promising a new solar cell design with drastically improved performance.

Physicists at Paderborn University have used complex computer simulations to create a novel solar cell design that boasts substantially higher efficiency than existing options. The enhancement in performance is attributed to a slender coating of an organic compound named tetracene. The results have recently been published in the renowned journal Physical Review Letters.

“The annual energy of solar radiation on Earth amounts to over one trillion kilowatt-hours and thus exceeds the global energy demand by more than 5,000 times. Photovoltaics, i.e. the generation of electricity from sunlight, therefore offers a large and still largely untapped potential for the supply of clean and renewable energy. Silicon solar cells used for this purpose currently dominate the market, but have efficiency limits,” explains Prof Dr Wolf Gero Schmidt, physicist and Dean of the Faculty of Natural Sciences at Paderborn University. One reason for this is that some of the energy from short-wave radiation is not converted into electricity, but into unwanted heat.

Feb 24, 2024

Harness Strain to Harvest Solar Energy

Posted by in categories: engineering, solar power, sustainability

The engineering of structural deformations in light-sensitive semiconductors can boost the efficiency of solar cells.

The quest for an efficient method to convert solar energy into electricity is crucial in the pursuit of carbon neutrality and environmental sustainability. Traditional solar cells are based on junctions between semiconductors, where a current is produced by photogenerated carriers separated by an electric field at the junction. Efforts to enhance solar-cell performance have focused on refining semiconductor properties and on perfecting devices. Concurrently, researchers are exploring alternative photovoltaic mechanisms that could work in synergy with the junction-based photovoltaic effect to boost solar-cell efficiency. Within this context, the engineering of a strain gradient in the material has emerged as a promising research direction. In this phenomenon, known as the flexophotovoltaic effect, an inhomogeneous strain in the material produces a photovoltaic effect in the absence of a junction [1].

Feb 24, 2024

Solar-Powered Toilet Treats and Recycles Wastewater

Posted by in categories: chemistry, mobile phones, solar power, sustainability

The Seva Sustainable Sanitation innovation is a smart, electro-chemical toilet unit, which is suitable for use in off-grid rural areas of developing countries. It can turn toilet wastewater into disinfected water, using the power from its mounted solar panels to sterilise and clarify it. Macronutrients such as carbon, nitrogen, and phosphorus can be nearly fully recovered from the waste, leaving nothing but water that is recycled for flushing or irrigation. The toilet unit is also equipped with sensors, a mobile phone-based maintenance guide, and smart grid technology that empowers anyone in the community to repair the system when necessary. When a toilet is out of order, the technology automatically directs users to other nearby sanitation systems. So far, the solution has been deployed in four countries.

Page 16 of 145First1314151617181920Last