Archive for the ‘quantum physics’ category: Page 769
Jun 29, 2016
Atomic-scale simulations predict how to use nanoparticles to increase hydrogen production
Posted by Karen Hurst in categories: computing, particle physics, quantum physics
Awesome!
What if industrial waste water could become fuel? With affordable, long-lasting catalysts, water could be split to produce hydrogen that could be used to power fuel cells or combustion engines.
By conducting complex simulations, scientists showed that adding lithium to aluminum nanoparticles results in orders-of-magnitude faster water-splitting reactions and higher hydrogen production rates compared to pure aluminum nanoparticles. The lithium allowed all the aluminum atoms to react, which increased yields (Nano Letters, “Hydrogen-on-demand using metallic alloy nanoparticles in water”).
Jun 28, 2016
No need in supercomputers
Posted by Karen Hurst in categories: business, cybercrime/malcode, information science, particle physics, quantum physics, robotics/AI, singularity, supercomputing
Great that they didn’t have to use a super computer to do their prescribed, lab controlled experiments. However, to limit QC to a super computer and experimental computations only is a big mistake; I cannot stress this enough. QC is a new digital infrastructure that changes our communications, cyber security, and will eventually (in the years to come) provide consumers/ businesses/ and governments with the performance they will need for AI, Biocomputing, and Singularity.
A group of physicists from the Skobeltsyn Institute of Nuclear Physics, the Lomonosov Moscow State University, has learned to use personal computer for calculations of complex equations of quantum mechanics, usually solved with help of supercomputers. This PC does the job much faster. An article about the results of the work has been published in the journal Computer Physics Communications.
Senior researchers Vladimir Pomerantcev and Olga Rubtsova, working under the guidance of Professor Vladimir Kukulin (SINP MSU) were able to use on an ordinary desktop PC with GPU to solve complicated integral equations of quantum mechanics — previously solved only with the powerful, expensive supercomputers. According to Vladimir Kukulin, personal computer does the job much faster: in 15 minutes it is doing the work requiring normally 2–3 days of the supercomputer time.
Jun 28, 2016
The Beginning of the Universe? Quantum Computer Could Simulate Particle Physics
Posted by Karen Hurst in categories: computing, particle physics, quantum physics, space
Want to simulate the creation of the Universe — use QC.
Scientists have for the first time simulated the creation of particle and antiparticle pairs in a quantum computer.
(Photo : gr8effect / Pixabay)
Continue reading “The Beginning of the Universe? Quantum Computer Could Simulate Particle Physics” »
Jun 27, 2016
New, better way to build circuits for world’s first useful quantum computers
Posted by Karen Hurst in categories: computing, encryption, quantum physics, security
We’re on a roll with QC.
The era of quantum computers is one step closer as a result of research published in the current issue of the journal Science. The research team has devised and demonstrated a new way to pack a lot more quantum computing power into a much smaller space and with much greater control than ever before. The research advance, using a 3-dimensional array of atoms in quantum states called quantum bits—or qubits—was made by David S. Weiss, professor of physics at Penn State University, and three students on his lab team. He said “Our result is one of the many important developments that still are needed on the way to achieving quantum computers that will be useful for doing computations that are impossible to do today, with applications in cryptography for electronic data security and other computing-intensive fields.”
The new technique uses both laser light and microwaves to precisely control the switching of selected individual qubits from one quantum state to another without altering the states of the other atoms in the cubic array. The new technique demonstrates the potential use of atoms as the building blocks of circuits in future quantum computers.
Continue reading “New, better way to build circuits for world’s first useful quantum computers” »
Jun 27, 2016
How The Majorana Fermion Is Going To Change The World
Posted by Karen Hurst in categories: computing, education, particle physics, quantum physics
We now have a way to do tracibility in QC.
Shutterstock.
Chinese scientists won a major victory recently, by proving that the Majorana fermion — a particle we’ve found tantalizing hints of for years — genuinely exists. This discovery has huge implications for quantum computing, and it might change the world. But how?
Continue reading “How The Majorana Fermion Is Going To Change The World” »
Jun 26, 2016
Quantum Computing: A Primer
Posted by Karen Hurst in categories: computing, particle physics, quantum physics
This video is worthless. I hear a person who is out of touch with the QC work and isn’t even aware all of the work going on. Frankly, QC is being worked on by big tech (Amazon, Google, Microsoft, D-Wave, IBM), governmental labs and incubators, limited set of start ups who are also (in many cases tied to big tech), and university research labs. Therefore, I don’t really find this soapbox video that informative as well as not in touch with where QC is today. It appears to me that this guy has sour grapes over not being engaged.
At least if you’re going to get on a soapbox and try to talk about QC like you’re somehow an expert or informed; at least make sure you know what has been shown, reported, and in development currently that has been publically announced so that you don’t look like you’re an un-informed consultant doing a superficial presentation and didn’t even bother doing the due diligence 1st. Otherwise, you just discredited your VC/ firm to the public and to those working on QC.
Jun 26, 2016
Experimental quantum computer manages first high-energy physics simulation
Posted by Karen Hurst in categories: computing, particle physics, quantum physics
Nice.
Quantum computing makes small, but significant progress.
A high-energy physics experiment has been completed using a simple quantum device that, if scaled up, could potentially greatly outperform a conventional computer.
Continue reading “Experimental quantum computer manages first high-energy physics simulation” »
Jun 25, 2016
NASA Wants to Launch Interstellar Space Missions in 20 Years
Posted by Shailesh Prasad in categories: nanotechnology, quantum physics, robotics/AI, space, time travel
The craving to explore beyond our solar system grows sturdier every day. This proves true for the understanding of wormholes and time travel as well. In order to satisfy our thirst for the unknown, NASA will research unknown physics revolutionizing exploration of space. We first have to advance our understanding of space-time, the quantum vacuum, gravity and other physical phenomena. This info will help NASA send robots on interstellar space missions. Precisely 15 areas will be studied comprising human exploration, landing systems, nanotechnology and robots.
Jun 24, 2016
A new form of hybrid photodetectors with quantum dots and graphene
Posted by Karen Hurst in categories: computing, quantum physics
Glad to see others finding value in using Q-Dots with Graphene.
The development of photodetectors has been a matter of considerable interest in the past decades since their applications are essential to many different fields including cameras, medical devices, safety equipment, optical communication devices or even surveying instruments, among others.
Many efforts have been focused towards optoelectronic research in trying to create low cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse. This is of paramount importance especially in the short wave infrared which currently is addressed by very expensive III-V InGaAs photodetectors. The development of two main classes of photodetectors, photodiodes and phototransistors, have partially been able to accomplish these goals because even though they both have many outstanding properties, none seem to fulfill all of these requirements. While photodiodes are much faster than phototransistors, phototransistors have a higher gain and do not require low noise preamplifiers for their use.
To overcome these limitations, ICFO researchers Ivan Nikitskiy, Stijn Goossens, Dominik Kufer, Tania Lasanta, Gabriele Navickaite, led by ICREA professors at ICFO Frank Koppens and Gerasimos Konstantatos, have been able to develop a hybrid photodetector capable of attaining concomitantly better performance features in terms of speed, quantum efficiency and linear dynamic range, operating not only in the visible but also in the near infrared (NIR: 700-1400nm) and SWIR range (1400-3000nm). At the same time this technology is based upon materials that can be monolithically integrated with Si CMOS electronics as well as flexible electronic platforms. The results of this work have been recently published in Nature Communications.
Continue reading “A new form of hybrid photodetectors with quantum dots and graphene” »