Menu

Blog

Archive for the ‘quantum physics’ category: Page 487

Jan 19, 2021

Tracking a Single Ion in an Ultracold Gas

Posted by in categories: particle physics, quantum physics

Direct observation of an ion moving through a Bose-Einstein condensate identifies the effect of ion-atom collisions on charge transport in an ultracold gas.

When you expose mobile electrical charges in a medium to an electrical field, current flows. The charges are accelerated by the field, but collisions within the medium give rise to a kind of friction effect, which limits the velocity of the charges and thus the current. This universal concept, called diffusive transport, describes a large range of media, such as metallic conductors, electrolytic solutions, and gaseous plasmas. But in a quantum system, such as a superconductor or a superfluid, other collective effects can influence the transport through the medium. Now, a group led by Florian Meinert and Tilman Pfau both of the University of Stuttgart, Germany, have carried out charge-transport experiments with a single ion traversing a Bose-Einstein condensate (BEC), which is a quantum gas of cold neutral atoms [1]. The precise tracking of the ion shows that the transport is diffusive and reveals the character of the ion-atom collisions.

Jan 18, 2021

Martinus Veltman, Who Made Key Contribution in Physics, Dies at 89

Posted by in categories: particle physics, quantum physics

Martinus J.G. Veltman, a Dutch theoretical physicist who was awarded the Nobel Prize for work that explained the structure of some of the fundamental forces in the universe, helping to lay the groundwork for the development of the Standard Model, the backbone of quantum physics, died on Jan. 4 in Bilthoven, the Netherlands. He was 89.

His death was announced by the National Institute for Subatomic Physics in the Netherlands. No cause was given.

There are four known fundamental forces in the universe: gravity, electromagnetism, the strong force that bonds subatomic particles together, and the weak force that is responsible for particle decay. Since the discovery of the last two forces in the first half of the 20th century, physicists have looked for a unified theory that could account for the existence of all four.

Jan 18, 2021

Using drones to create local quantum networks

Posted by in categories: computing, drones, particle physics, quantum physics, satellites

A team of researchers affiliated with several institutions in China has used drones to create a prototype of a small airborne quantum network. In their paper published in the journal Physical Review Letters, the researchers describe sending entangled particles from one drone to another and from a drone to the ground.

Computer scientists, physicists and engineers have been working over the last several years toward building a usable quantum —doing so would involve sending entangled particles between users and the result would be the most secure network ever made. As part of that effort, researchers have sent entangled particles over fiber cables, between towers and even from satellites to the ground. In this new effort, the researchers have added a new element—drones.

To build a long-range quantum network, satellites appear to be the ideal solution. But for smaller networks, such as for communications between users in the same city, another option is needed. While towers can be of some use, they are subject to weather and blockage, intentional or otherwise. To get around this problem, the researchers used drones to carry the signals.

Jan 18, 2021

Scientists’ discovery is paving the way for novel ultrafast quantum computers

Posted by in categories: computing, particle physics, quantum physics

Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications.

While in ordinary computers, the units of information are binary digits or bits, in quantum computers the units are quantum bits or qubits. In an ordinary , information is mostly carried by electricity in memory storage cells consisting of field-effect transistors, but in a quantum computer, depending on the type of computer, the information carriers are much smaller particles, for example ions, photons and electrons. The information may be carried by a certain characteristic of this particle (for example, spin of electron or polarization of photon), which may have two states. While the values of an ordinary bit are 0 or 1, also intermediate variants of these values are possible in the quantum bit. The intermediate state is called the superposition. This property gives quantum computers the ability to solve tasks, which ordinary computers are unable to perform within reasonable time.

Jan 17, 2021

Scientists Make Pivotal Discovery in Quantum and Classical Information Processing

Posted by in categories: engineering, quantum physics

Scientists tame photon-magnon interaction. Working with theorists in the University of Chicago’s Pritzker School of Molecular Engineering, researchers in the U.S. Department of Energy’s (DOE) Argonne National Laboratory have achieved a scientific control that is a first of its kind. They demonstrat.

Jan 17, 2021

Is the Physical World a Neural Network?

Posted by in categories: cosmology, particle physics, quantum physics, robotics/AI

Part of the Divine Mind, and so we are.


The most recent observations at both quantum and cosmological scales are casting serious doubts on our current models. For instance, at quantum scale, the latest electronic hydrogen proton radius measurement resulted in a much smaller radius than the one predicted by the standard model of particles physics, which now is off by 4%. At cosmological scale, the amount of observations regarding black holes and galactic formation heading in the direction of a radically different cosmological model, is overwhelming. Black holes have shown being much older than their hosting galaxies, galactic formation is much younger than our models estimates, and there is evidence of at least 64 black holes aligned with respect to their axis of rotation, suggesting the presence of a large scale spatial coherence in angular momentum that is impossible to predict with our current models. Under such scenario, it should not fall as a surprise the absence of a better alternative to unify quantum theory and relativity, and thus connect the very small to the very big, than the idea that the universe is actually a neural network. And for this reason, a theory of everything would be based on it.


As explained in Targemann’s interview to Vanchurin on Futurism, the work of Vanchurin, proposes that we live in a huge neural network that governs everything around us.

Continue reading “Is the Physical World a Neural Network?” »

Jan 17, 2021

Scientists confirm quantum response to magnetism in cells

Posted by in categories: chemistry, quantum physics

University of Tokyo scientists observe predicted quantum biochemical effects on cells.

Jan 16, 2021

The incredible physics behind quantum computing | Brian Greene, Michio Kaku, & more | Big Think

Posted by in categories: computing, cosmology, particle physics, quantum physics

The incredible physics behind quantum computing.
Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Learn skills from the world’s top minds at Big Think Edge: https://bigth.ink/Edge.
———————————————————————————
While today’s computers—referred to as classical computers—continue to become more and more powerful, there is a ceiling to their advancement due to the physical limits of the materials used to make them. Quantum computing allows physicists and researchers to exponentially increase computation power, harnessing potential parallel realities to do so.

Quantum computer chips are astoundingly small, about the size of a fingernail. Scientists have to not only build the computer itself but also the ultra-protected environment in which they operate. Total isolation is required to eliminate vibrations and other external influences on synchronized atoms; if the atoms become ‘decoherent’ the quantum computer cannot function.

Continue reading “The incredible physics behind quantum computing | Brian Greene, Michio Kaku, & more | Big Think” »

Jan 15, 2021

Quantum Drones Take Flight

Posted by in categories: computing, drones, encryption, mobile phones, quantum physics, satellites

A small prototype of a drone-based quantum network has successfully relayed a quantum signal over a kilometer of free space.

The airwaves are chock full of “classical” information from cell phones, radio stations, and Wi-Fi hubs, but one day those waves could be carrying quantum encrypted messages or data input for a quantum computer. A new experiment has used a pair of hovering drones to dole out quantum information to two ground stations separated by 1 km [1]. This demonstration could lead to a drone-based quantum network that could be positioned—and easily repositioned—over a city or rural area.

Quantum communication promises fully secure message sharing. For example, two users could exchange encrypted messages using “entangled” photons, pairs of particles with a unique quantum-mechanical relationship. For every pair, one photon would be sent to each of the users, who would be alerted to any eavesdropping by a loss of entanglement between the photons. One of the most common methods for sending such quantum encrypted messages relies on optical fibers (see Viewpoint: Record Distance for Quantum Cryptography). But in fibers, a large fraction of the photons scatter before reaching their destination. More photons can survive if quantum information is transmitted through the atmosphere, as in the quantum link established using a Chinese satellite in 2018 (see Focus: Intercontinental, Quantum-Encrypted Messaging and Video). However, satellites are expensive and difficult to adapt to changing demands on the ground.

Jan 15, 2021

Endless Versions of You in Endless Parallel Universes? A Growing Number of Physicists Embrace the Idea

Posted by in categories: cosmology, particle physics, quantum physics

Circa 2019


Conventionally speaking, there is a single physicist named Sean Carroll at Caltech, busily puzzling over the nature of the quantum world. In the theoretical sense, though, he may be one of a multitude, each existing in its own world. And there’s nothing unique about him: Every person, rock, and particle in the universe participates in an endlessly branching reality, Carroll argues, splitting into alternate versions whenever an event occurs that has multiple possible outcomes.

He is well aware that this idea sounds like something from a science fiction movie (and it doesn’t help that he was an advisor on Avengers: Endgame). But these days, a growing number of his colleagues take the idea of multiple worlds seriously. In his new book, Something Deeply Hidden, Carroll proposes that the “Many Worlds Interpretation” is not only a reasonable way to make sense of quantum mechanics, it is the most reasonable way to do so.

Continue reading “Endless Versions of You in Endless Parallel Universes? A Growing Number of Physicists Embrace the Idea” »