Menu

Blog

Archive for the ‘quantum physics’ category: Page 462

Jun 18, 2021

Light cages could give quantum-information networks a boost

Posted by in categories: computing, particle physics, quantum physics

A new on-chip device that is very good at mediating interactions between light and atoms in a vapour has been developed by researchers in Germany and the UK. Flavie Davidson-Marquis at Humboldt University of Berlin and colleagues call their device a “quantum-optically integrated light cage” and say that it could be used for wide range of applications in quantum information technology.

Hybrid quantum photonics is a rapidly growing area of research that integrates different optical systems within miniaturized devices. One area of interest is the creation of devices for the control, storage and retrieval of the quantum states of light using individual atoms. This is usually done by integrating on-chip photonic devices with miniaturized cells containing warm vapours of alkali atoms. However, this approach faces challenges due to inefficient vapour filling times, high losses of quantum information near cell surfaces and limited overlaps between the wavelengths of light used in optical circuits and the wavelengths of atomic transitions.

Jun 18, 2021

Quantum Breakthrough: New Invention Keeps Qubits of Light Stable at Room Temperature

Posted by in categories: encryption, energy, quantum physics

Researchers from University of Copenhagen have developed a new technique that keeps quantum bits of light stable at room temperature instead of only working at-270 degrees. Their discovery saves power and money and is a breakthrough in quantum research.

As almost all our private information is digitalized, it is increasingly important that we find ways to protect our data and ourselves from being hacked.

Quantum Cryptography is the researchers’ answer to this problem, and more specifically a certain kind of qubit — consisting of single photons: particles of light.

Jun 17, 2021

Correlated charge noise and relaxation errors in superconducting qubits

Posted by in categories: particle physics, quantum physics

Cosmic-ray particles and γ-rays striking superconducting circuits can generate qubit errors that are spatially correlated across several millimetres, hampering current error-correction approaches.

Jun 17, 2021

Physicists used LIGOs mirrors to approach a quantum limit

Posted by in category: quantum physics

Using LIGO’s laser beams to reduce jiggling rather than detect gravitational waves, scientists have gotten closer to the realm of quantum mechanics.

Jun 17, 2021

IBM’s first quantum computer outside of the US has just gone live

Posted by in categories: computing, quantum physics

Big Blue has, for the first time, built a quantum computer that is not physically located in its US data centers. For the company, this is the start of global quantum expansion.

Jun 16, 2021

Talking quantum dots could be used as qubits

Posted by in categories: computing, quantum physics

Computer model simulates how interactions extend exciton lifetimes.

Jun 16, 2021

Quasiprobabilities shed light on quantum advantage

Posted by in category: quantum physics

Given the importance of the Kirkwood–Dirac quasiprobability’s nonclassical values, two natural questions arise: Under what conditions does this quasiprobability behave anomalously? And how anomalous can its behaviour get? That’s what we wanted to explore.

What did you do in the paper?

We pinned down conditions under which the Kirkwood–Dirac quasiprobability assumes nonclassical values. Using these conditions, one can calculate which experiments can exhibit certain types of quantum advantages. We also put a “ceiling” on how much nonclassicality one Kirkwood–Dirac quasiprobability distribution can contain.

Jun 16, 2021

Outgrowing Einstein: A critical mass of cosmological discrepancies makes us reinterpret relativity

Posted by in categories: computing, quantum physics, singularity, space

In search for a unifying quantum gravity theory that would reconcile general relativity with quantum theory, it turns out quantum theory is more fundamental, after all. Quantum mechanical principles, some physicists argue, apply to all of reality (not only the realm of ultra-tiny), and numerous experiments confirm that assumption. After a century of Einsteinian relativistic physics gone unchallenged, a new kid of the block, Computational Physics, one of the frontrunners for quantum gravity, states that spacetime is a flat-out illusion and that what we call physical reality is actually a construct of information within [quantum neural] networks of conscious agents. In light of the physics of information, computational physicists eye a new theory as an “It from Qubit” offspring, necessarily incorporating consciousness in the new theoretic models and deeming spacetime, mass-energy as well as gravity emergent from information processing.

In fact, I expand on foundations of such new physics of information, also referred to as [Quantum] Computational Physics, Quantum Informatics, Digital Physics, and Pancomputationalism, in my recent book The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution. The Cybernetic Theory of Mind I’m currently developing is based on reversible quantum computing and projective geometry at large. This ontological model, a “theory of everything” of mine, agrees with certain quantum gravity contenders, such as M-Theory on fractal dimensionality and Emergence Theory on the code-theoretic ontology, but admittedly goes beyond all current models by treating space-time, mass-energy and gravity as emergent from information processing within a holographic, multidimensional matrix with the Omega Singularity as the source.

Continue reading “Outgrowing Einstein: A critical mass of cosmological discrepancies makes us reinterpret relativity” »

Jun 14, 2021

Manufacturing silicon qubits at scale

Posted by in categories: chemistry, engineering, finance, information science, quantum physics, supercomputing

Circa 2019


As quantum computing enters the industrial sphere, questions about how to manufacture qubits at scale are becoming more pressing. Here, Fernando Gonzalez-Zalba, Tsung-Yeh Yang and Alessandro Rossi explain why decades of engineering may give silicon the edge.

In the past two decades, quantum computing has evolved from a speculative playground into an experimental race. The drive to build real machines that exploit the laws of quantum mechanics, and to use such machines to solve certain problems much faster than is possible with traditional computers, will have a major impact in several fields. These include speeding up drug discovery by efficiently simulating chemical reactions; better uses of “big data” thanks to faster searches in unstructured databases; and improved weather and financial-market forecasts via smart optimization protocols.

Continue reading “Manufacturing silicon qubits at scale” »

Jun 14, 2021

New record distance for quantum communications

Posted by in categories: biotech/medical, computing, government, internet, quantum physics

Toshiba’s Cambridge Research Laboratory has achieved quantum communications over optical fibres exceeding 600 km in length, three times further than the previous world record distance.

The breakthrough will enable long distance, quantum-secured information transfer between metropolitan areas and is a major advance towards building a future Quantum Internet.

The term “Quantum Internet” describes a global network of quantum computers, connected by long distance quantum communication links. This technology will improve the current Internet by offering several major benefits – such as the ultra-fast solving of complex optimisation problems in the cloud, a more accurate global timing system, and ultra-secure communications. Personal data, medical records, bank details, and other information will be physically impossible to intercept by hackers. Several large government initiatives to build a Quantum Internet have been announced in China, the EU and the USA.