Menu

Blog

Archive for the ‘quantum physics’ category: Page 405

Feb 28, 2022

Physicists Manipulate Electrons To Create “Synthetic Dimensions”

Posted by in categories: particle physics, quantum physics

Rice University lab manipulates ultracold Rydberg atoms to mimic quantum interactions.

Our spatial sense doesn’t extend beyond the familiar three dimensions, but that doesn’t stop scientists from playing with whatever lies beyond.

Rice University physicists are pushing spatial boundaries in new experiments. They’ve learned to control electrons in gigantic Rydberg atoms with such precision they can create “synthetic dimensions,” important tools for quantum simulations.

Feb 25, 2022

Physicists test real quantum theory in an optical quantum network

Posted by in category: quantum physics

Quantum theory was originally formulated using complex numbers. Nonetheless, when replying to a letter by Hendrik Lorenz, Erwin Schrödinger (one of its founding fathers), wrote: “Using complex numbers in quantum theory is unpleasant and should be objected to. The wave function is surely fundamentally a real function.”

In recent years, scientists successfully ruled out any local hidden variable explanation of quantum using Bell tests. Later, such tests were generalized to a network with multiple independent hidden variables. In such a quantum network, quantum theory with only real numbers, or “real quantum theory,” and standard quantum theory make quantitatively different predictions in some scenarios, enabling experimental tests of the validity of real quantum theory.

Researchers at Southern University of Science and Technology in China, the Austrian Academy of Sciences and other institutes worldwide have recently adapted one of these tests so that they could be implemented in state-of-the-art photonic systems. Their paper, published in Physical Review Letters, experimentally demonstrates the existence of quantum correlations in an optical network that cannot be explained by real quantum theory.

Feb 25, 2022

Synthesizing Triatomic Molecules Under Quantum Constraints

Posted by in categories: energy, quantum physics

Radio-Frequency Pulse Enables Association of Triatomic Molecules in Ultracold 23 Na40 K + 40 K Gas.

Three-body system is already formidable in classical physics, not to mention the quantum state three-body system. But what if scientists can synthesize triatomic molecules under quantum constraints? It could serve as an appropriate platform to study three-body potential energy surface which is important but difficult to calculate.

Recently, Prof. PAN Jianwei and Prof. ZHAO Bo from the University of Science and Technology of China (USTC), collaborating with Prof. BAI Chunli from Institute of Chemistry of the Chinese Academy of Sciences, found strong evidence for association of triatomic molecules after applying a radio-frequency (rf) pulse to an ultracold mixture of 23 Na40 K and 40 K near Feshbach resonance. The work was published in the journal Nature.

Feb 24, 2022

Loop quantum gravity: time come in tiny chunks?

Posted by in category: quantum physics

Quantum mechanics tells us that the forces of nature come in discrete, tiny chunks. Gravity, the bending of space-time, is a force. So is space-time quantized as well?

Feb 24, 2022

Sensor breakthrough paves way for groundbreaking map of world under Earth surface

Posted by in categories: quantum physics, security

This looks interesting.

If it can detect underground structures, not only might it detect tunnels, but it might make tunneling easier.


An object hidden below ground has been located using quantum technology—a long-awaited milestone with profound implications for industry, human knowledge and national security.

Continue reading “Sensor breakthrough paves way for groundbreaking map of world under Earth surface” »

Feb 23, 2022

Mind-bending new quantum experiments are blurring past, present and future

Posted by in categories: futurism, quantum physics

A professor of physics explains how mind-bending quantum experiments are blurring the line between past, present and future. Further, he argues, these experiments, which factor in ‘the relevance of the future to the present’, may demand a radical rethinking of quantum experimentation itself.

Feb 23, 2022

Quantum gravity sensors could finally overcome a major issue raised by Einstein

Posted by in categories: electronics, quantum physics

Cartography could be changing forever as an advanced tool moves from the lab to the real world. A new quantum gravity sensor helps overcome an issue raised by Einstein.

Feb 22, 2022

High precision measurement of the charm oscillation parameter yCP — yCPKπ using decays of D0 mesons to two light mesons

Posted by in categories: particle physics, quantum physics

Yesterday, LHCb submitted for publication new results of matter-antimatter oscillations using decays of charm particles, significantly improving the current experimental knowledge!

Read our news: https://lhcb-outreach.web.cern.ch/2022/02/21/high-precision-…ht-mesons/


Today, the LHCb Collaboration submitted for publication a paper that reports the results of the high precision measurement of the charm oscillation (mixing) parameter yCP – yCP using two body D0 meson decays. The result is more precise than the current world average value by a factor of four.

Continue reading “High precision measurement of the charm oscillation parameter yCP — yCPKπ using decays of D0 mesons to two light mesons” »

Feb 22, 2022

Physicists harness electrons to make ‘synthetic dimensions’

Posted by in categories: particle physics, quantum physics

Our spatial sense doesn’t extend beyond the familiar three dimensions, but that doesn’t stop scientists from playing with whatever lies beyond.

Rice University physicists are pushing spatial boundaries in new experiments. They’ve learned to control electrons in gigantic Rydberg atoms with such precision they can create “synthetic dimensions,” important tools for .

The Rice team developed a technique to engineer the Rydberg states of ultracold strontium atoms by applying resonant microwave electric fields to couple many states together. A Rydberg state occurs when one electron in the atom is energetically bumped up to a highly , supersizing its orbit to make the atom thousands of times larger than normal.

Feb 21, 2022

Scientists Are Data Mining Black Holes to See If They Are Holograms

Posted by in categories: cosmology, holograms, quantum physics, robotics/AI

There are few places in the universe that invite as much curiosity—and terror—as the interior of a black hole. These extreme objects exert such a powerful gravitational pull that not even light can escape them, a feature that has left many properties of black holes unexplained.

Now, a team led by Enrico Rinaldi, a research scientist at the University of Michigan, have used quantum computing and deep learning to probe the bizarre innards of black holes under the framework of a mind-boggling idea called holographic duality. This idea posits that black holes, or even the universe itself, might be holograms.