Menu

Blog

Archive for the ‘quantum physics’ category: Page 344

Aug 16, 2022

Scientists blast atoms with Fibonacci laser to make an “extra” dimension of time

Posted by in categories: computing, particle physics, quantum physics

The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).

Aug 16, 2022

Scientists entangled two different quantum nodes 12.5 km apart from each other

Posted by in category: quantum physics

Aug 16, 2022

A new frontier in quantum science and technology

Posted by in categories: quantum physics, science

Purdue University researchers have unlocked a new area of quantum science and technology by utilizing photons and electron spin qubits to regulate nuclear spins in a two-dimensional material. They used electron spin qubits as atomic-scale sensors to effect the first experimental control of nuclear spin qubits in ultrathin hexagonal boron nitride.

The study could lead to applications such as atomic-scale nuclear magnetic resonance spectroscopy. It could also allow reading and writing quantum information with nuclear spins in 2D materials.

Aug 16, 2022

The entanglement of two quantum memory systems 12.5 km apart from each other

Posted by in categories: computing, internet, quantum physics

Quantum computing technology could have notable advantages over classical computing technology, including a faster speed and the ability to tackle more complex problems. In recent years, some researchers have also been exploring the possible establishment of a “quantum internet,” a network that would allow quantum devices to exchange information, just like classical computing devices exchange information today.

Aug 16, 2022

Researchers develop the world’s fastest two-qubit gate between two single atoms

Posted by in categories: computing, particle physics, quantum physics

The two-qubit gate can be reached in 6.9 nanoseconds.

* A research group succeeded in executing the world’s fastest two-qubit gate. * Quantum computers and optical tweezers were used to conduct the research. * It is used an ultrafast laser to manipulate cold atoms.

The world’s fastest two-qubit gate has been executed in 6.5 nanoseconds by a group of researchers at the National Institutes of Natural Sciences. A research group led by graduate student Yeelai Chew, Assistant Professor Sylvain de Léséleuc, and Professor Kenji Ohmori used atoms cooled to almost absolute zero and trapped in optical tweezers separated by a micron. By manipulating the atoms with special laser light for 10 picoseconds, they executed the world’s fastest two-qubit gate.

Aug 16, 2022

Scientists may have solved Stephen Hawking’s black hole paradox

Posted by in categories: cosmology, quantum physics

Researchers may have solved Professor Stephen Hawking’s famous black hole paradox—a mystery that has puzzled scientists for almost half a century.

According to two new studies, something called “quantum hair” is the answer to the problem.

In the first paper, published in the journal Physical Review Letters, researchers demonstrated that are more complex than originally thought and have gravitational fields that hold information about how they were formed.

Aug 16, 2022

Quantum hair and black hole information

Posted by in categories: cosmology, particle physics, quantum physics

Circa 2022


We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior.

Aug 16, 2022

Inter-dimensional effects in nano-structures

Posted by in categories: nanotechnology, particle physics, quantum physics

Circa 2012 o.o!!!


We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior.

Aug 16, 2022

2D array of electron and nuclear spin qubits opens new frontier in quantum science

Posted by in categories: quantum physics, science

As published in Nature Materials (“Nuclear spin polarization and control in hexagonal boron nitride”), the research team used electron spin qubits as atomic-scale sensors, and also to effect the first experimental control of nuclear spin qubits in ultrathin hexagonal boron nitride.

Researchers used light and electron spin qubits to control nuclear spin in a 2D material, opening a new frontier in quantum science and technology. (Image: Secondbay Studio)

Aug 16, 2022

The Next Big Leap in Computing

Posted by in categories: quantum physics, robotics/AI

https://www.youtube.com/watch?v=f4A85foHPZY&feature=youtu.be

For AI — reading and writing to memory is the biggest energy and time sink by far. A couple of new solution approaches here:


In this video I talk about NEW Technology which will enable the Next BIG Leap in Computing.
#IBM #AI #computing.

Continue reading “The Next Big Leap in Computing” »