Menu

Blog

Archive for the ‘quantum physics’ category: Page 278

Mar 24, 2023

BREAKING🚹: Scientists create the 5th form of matter for 6 minutes

Posted by in category: quantum physics

In a ground-breaking experiment, scientists have successfully created the fifth form of matter, known as the Bose-Einstein condensate (BEC), for a remarkable duration of six minutes.

This major accomplishment has the potential to revolutionize our understanding of quantum mechanics and open the door to new technological advancements. In this article, we will explore the significance of this achievement, the nature of BECs, and the potential applications of this newfound knowledge.

Mar 23, 2023

How Quantum Computers Break The Internet
 Starting Now

Posted by in categories: computing, encryption, information science, internet, mathematics, quantum physics

A quantum computer in the next decade could crack the encryption our society relies on using Shor’s Algorithm. Head to https://brilliant.org/veritasium to start your free 30-day trial, and the first 200 people get 20% off an annual premium subscription.

▀▀▀
A huge thank you to those who helped us understand this complex field and ensure we told this story accurately — Dr. Lorenz Panny, Prof. Serge Fehr, Dr. Dustin Moody, Prof. Benne de Weger, Prof. Tanja Lange, PhD candidate Jelle Vos, Gorjan Alagic, and Jack Hidary.

Continue reading “How Quantum Computers Break The Internet
 Starting Now” »

Mar 23, 2023

Nvidia and Quantum Machines promote quantum-classical computing at GTC

Posted by in categories: quantum physics, supercomputing

At its annual GTC event, Nvidia announced a partnership with Tel Aviv-based Quantum Machines to create a state-of-the-art architecture for quantum-classical computing.

The collaboration intends to bring about purpose-built infrastructure for quantum computing and GPU supercomputing capable of real-time quantum error correction. Known as DGX Quantum, the first system is expected to deploy to the Israel Quantum Computing Center.

Mar 23, 2023

Time-delocalized variables violating causal inequalities

Posted by in categories: futurism, quantum physics

A team of researchers from the Université libre de Bruxelles and the French National Center for Scientific Research have shown for the first time that an exotic type of process violating causal inequalities can be realized with known physics. A violation of a causal inequality proves under theory-independent assumptions that certain variables in an experiment cannot be assigned a definite causal order.

This is a phenomenon that has been known to be possible in theory, but widely believed impossible in practice, at least in the known regimes of physics. The new study, published in Nature Communications, shows that such processes can in fact be realized in standard quantum mechanics using variables that are delocalized in time. The finding may have far-reaching implications for our understanding of causality in physics.

The concept of causality is essential for physics and for our understanding of the world in general. Usually, we think of events as happening in a well-defined causal order. That is, they are ordered according to some time parameter, such that events in the past can influence events in the future, but not vice versa. For instance, the sunrise causes the rooster to crow, but whether the rooster crows does not have any influence on the sunrise.

Mar 23, 2023

Laser-cooled atoms bring networks of quantum computers a step closer

Posted by in categories: computing, particle physics, quantum physics

Rubidium atoms are used to convert between millimetre-wave photons and optical-wavelength photons.

Mar 23, 2023

Doubling a qubit’s life, researchers prove a key theory of quantum physics

Posted by in category: quantum physics

Researchers at Yale have for the first time, using a process known as quantum error correction, substantially extended the lifetime of a quantum bit—a long-sought-after goal and one of the trickiest challenges in the field of quantum physics.

Led by Yale’s Michael Devoret, the experiment proves—decades after its were proposed—that quantum error correction works in practice. Quantum error correction is a process designed to keep quantum information intact for a period of time longer than if the same information were stored in hardware components without any correction.

The results were published March 22 in Nature.

Mar 23, 2023

This Lab-Grown Brain Made a Muscle TWITCH, Here’s How

Posted by in categories: biotech/medical, food, neuroscience, quantum physics

Growing brains can be a tricky process, but growing ones that can make muscles move? That’s an incredible feat. Here’s how scientists did it.

How Close Are We to Farming Human Body Parts? — https://youtu.be/oRHxX9OW9ow.

Continue reading “This Lab-Grown Brain Made a Muscle TWITCH, Here’s How” »

Mar 22, 2023

Ultra-thin superconducting ink could be used in quantum computers

Posted by in categories: biotech/medical, chemistry, computing, quantum physics

A superconducting ink made through a simple process called chemical exfoliation could be used to print the cold circuits inside quantum computers and MRI machines.

By Leah Crane

Mar 22, 2023

Nvidia builds quantum-classical computing system with Israel’s Quantum Machines

Posted by in categories: computing, economics, engineering, quantum physics, security

US gaming and computer graphics giant Nvidia has joined forces with an Israeli startup to roll out a new hardware system to connect the quantum computer with classical computers.

The new system, Nvidia DGX Quantum, built together with Israel’s Quantum Machines, a developer of a standard universal language for quantum computers, is expected to be first deployed at Israel’s quantum computing research center at the end of this year.

The quantum computing R&D center funded by the Israel Innovation Authority at an investment of NIS 100 million ($27 million), which is headed by Quantum Machines, was established to help Israel build a quantum computer and advance research in the field that would lead to future developments in economics, technology, security, engineering, and science.

Mar 22, 2023

An expanding universe is simulated in a quantum droplet

Posted by in categories: cosmology, mathematics, quantum physics

Unfortunately for the field of cosmology, there is only one universe. This makes performing experiments in the same way as other scientific fields quite a challenge. But it turns out that the universe and the quantum fields that permeate it are highly analogous to quantum fluids like Bose-Einstein condensates (BECs), at least from a mathematical point of view. These fluids can be the subject of experiments, allowing cosmology to be studied in the lab.

\r \r.

In a paper published in Nature, researchers at Heidelberg University in Germany have for the first time used a BEC to simulate an expanding universe and certain quantum fields within it. This allows for the study of important cosmological scenarios. Not only is the universe currently expanding, but it is believed that in the first fractions of a second after the Big Bang it underwent a period of extremely rapid expansion known as “inflation.” This process would have expanded the microscopic fluctuations of quantum fields in the early universe to the size of galaxy clusters, seeding the large-scale structure of our universe today.