Menu

Blog

Archive for the ‘quantum physics’ category: Page 184

Jan 28, 2024

A ghostly quasiparticle rooted in a century-old Italian mystery could unlock quantum computing’s potential—if only it could be pinned down

Posted by in categories: nanotechnology, quantum physics, robotics/AI

Already, the graphene efforts have offered “a breath of fresh air” to the community, Alicea says. “It’s one of the most promising avenues that I’ve seen in a while.” Since leaving Microsoft, Zaletel has shifted his focus to graphene. “It’s clear that this is just where you should do it now,” he says.

But not everyone believes they will have enough control over the free-moving quasiparticles in the graphene system to scale up to an array of qubits—or that they can create big enough gaps to keep out intruders. Manipulating the quarter-charge quasiparticles in graphene is much more complicated than moving the Majoranas at the ends of nanowires, Kouwenhoven says. “It’s super interesting for physics, but for a quantum computer I don’t see it.”

Just across the parking lot from Station Q’s new office, a third kind of Majorana hunt is underway. In an unassuming black building branded Google AI Quantum, past the company rock-climbing wall and surfboard rack, a dozen or so proto–quantum computers dangle from workstations, hidden inside their chandelier-like cooling systems. Their chips contain arrays of dozens of qubits based on a more conventional technology: tiny loops of superconducting wires through which current oscillates between two electrical states. These qubits, like other standard approaches, are beset with errors, but Google researchers are hoping they can marry the Majorana’s innate error protection to their quantum chip.

Jan 28, 2024

Enabling distributed quantum sensors for simultaneous measurements in distant places

Posted by in categories: finance, quantum physics, security

A research team has succeeded in implementing a distributed quantum sensor that can measure multiple spatially distributed physical quantities with high precision beyond the standard quantum limit with few resources. Their findings are published in the journal Nature Communications.

Sharing the exact time between distant locations is becoming increasingly important in all areas of our lives, including finance, telecommunications, security, and other fields that require improved accuracy and precision in sending and receiving data.

Quantum phenomena such as superposition and entanglement can be used to more precisely measure the time of different clocks in two distant spaces. Similarly, if you have two physical quantities, one in Seoul and one in Busan, you can share the entanglement state in Seoul and Busan and then measure the two physical quantities simultaneously with greater precision than if you measure the physical quantities in Seoul and Busan separately.

Jan 27, 2024

Nanoscale Power Plants: Turning Heat Into Power With Graphene Ribbons

Posted by in categories: computing, encryption, nanotechnology, quantum physics

Quantum physicist Mickael Perrin uses graphene ribbons to build nanoscale power plants that turn waste heat from electrical equipment into electricity.

When Mickael Perrin started out on his scientific career 12 years ago, he had no way of knowing he was conducting research in an area that would be attracting wide public interest only a few years later: quantum electronics.

Continue reading “Nanoscale Power Plants: Turning Heat Into Power With Graphene Ribbons” »

Jan 27, 2024

Shaping the dawn of the quantum age

Posted by in categories: computing, internet, particle physics, quantum physics, space

Electrons that spin to the right and the left at the same time. Particles that change their states together, even though they are separated by enormous distances. Intriguing phenomena like these are completely commonplace in the world of quantum physics. Researchers at the TUM Garching campus are using them to build quantum computers, high-sensitivity sensors and the internet of the future.

“We cool the chip down to only a few thousandths of a degree above absolute zero—colder than in outer space,” says Rudolf Gross, Professor of Technical Physics and Scientific Director of the Walther Meissner Institute (WMI) at the Garching research campus. He’s standing in front of a delicate-looking device with gold-colored disks connected by cables: The cooling system for a special chip that utilizes the bizarre laws of .

For about twenty years now, researchers at WMI have been working on quantum computers, a technology based on a scientific revolution that occurred 100 years ago when quantum physics introduced a new way of looking at physics. Today it serves as the foundation for a “new era of technology,” as Prof. Gross calls it.

Jan 27, 2024

What We Still Would Not Know IF IVO Quantized Inertia Drive Works in Orbit

Posted by in categories: energy, quantum physics

The IVO quantum inertia drive is in orbit now and will be turned on within one to ten weeks and then operated for many weeks or months.

The IVO quantum inertia drive is very controversial because it would go against many theories in physics.

Let us assume the 52 millinewton drive using 1 watt of power from a drive that weighs about 200 grams works.

Jan 27, 2024

Can quantum hints in the brain revive a radical consciousness theory?

Posted by in categories: neuroscience, quantum physics

With anaesthetics and brain organoids, we are finally testing the idea that quantum effects explain consciousness – and the early results suggest this long-derided idea may have been misconstrued.

By George Musser

Jan 27, 2024

Theoretical Possibility of Quantum Stabilization of Traversable Wormholes

Posted by in categories: cosmology, quantum physics

In this article, we argue that we can explain quantum stabilization of Morris-Thorne traversable wormholes through quantum mechanics. We suggest that the utilization of dark matter and dark energy, conceptualized as negative mass and negative energy tied to the universe’s information content, can stabilize these wormholes. This approach diverges from the original Morris-Thorne model by incorporating quantum effects, offering a credible and adequate source of the exotic matter needed to prevent wormhole collapse. We reassess the wormholes’ stability and information content considering the new calculated revised vacuum energy based on the mass of bit of information. This new calculation makes the wormholes more viable within our universe’s limits.

Jan 27, 2024

Superconducting Qubit Breaks Low-Frequency Record

Posted by in category: quantum physics

Researchers have demonstrated an unprecedentedly low-frequency superconducting “fluxonium” qubit, which could facilitate experiments that probe macroscopic quantum phenomena.

Jan 27, 2024

A Moving Target for Quantum Advantage

Posted by in categories: computing, information science, quantum physics

Researchers have used quantum computers to solve difficult physics problems. But claims of a quantum “advantage” must wait as ever-improving algorithms boost the performance of classical computers.

Quantum computers have plenty of potential as tools for carrying out complex calculations. But exactly when their abilities will surpass those of their classical counterparts is an ongoing debate. Recently, a 127-qubit quantum computer was used to calculate the dynamics of an array of tiny magnets, or spins—a problem that would take an unfathomably long time to solve exactly with a classical computer [1]. The team behind the feat showed that their quantum computation was more accurate than nonexact classical simulations using state-of-the-art approximation methods. But these methods represented only a small handful of those available to classical-computing researchers. Now Joseph Tindall and his colleagues at the Flatiron Institute in New York show that a classical computer using an algorithm based on a so-called tensor network can produce highly accurate solutions to the spin problem with relative ease [2].

Jan 27, 2024

Shadows and Light: Discovering the Hidden Depths of Quantum Materials

Posted by in categories: materials, quantum physics

Scientists used a laser-based technique to reveal hidden quantum properties of the material Ta2NiSe5, potentially advancing the development of quantum light sources.

Certain materials have desirable properties that are hidden, and just as you would use a flashlight to see in the dark, scientists can use light to uncover these properties.

Researchers at the University of California San Diego have used an advanced optical technique to learn more about a quantum material called Ta2NiSe5 (TNS). Their work was published in the journal Nature Materials.