Menu

Blog

Archive for the ‘physics’ category: Page 97

Mar 15, 2023

How a Beam of Pellets Could Blast a Probe Into Deep Space

Posted by in categories: physics, robotics/AI, space

It’s a theoretical concept, but realistic enough that NASA’s Innovative Advanced Concepts program has given Davoyan’s group $175,000 to show that the technology is feasible. “There’s rich physics in there,” says Davoyan, a mechanical and aerospace engineer at UCLA. To create propulsion, he continues, “you either throw the fuel out of the rocket or you throw the fuel at the rocket.” From a physics perspective, they work the same: Both impart momentum to a moving object.

His team’s project could transform long-distance space exploration, dramatically expanding the astronomical neighborhood accessible to us. After all, we’ve only sent a few robotic visitors to scope out Uranus, Neptune, Pluto, and their moons. We know even less about objects lurking farther away. The even smaller handful of NASA craft en route to interstellar space include Pioneer 10 and 11, which blasted off in the early 1970s; Voyager 1 and 2, which were launched in 1977 and continue their mission to this day; and the more recent New Horizons, which took nine years to fly by Pluto in 2015, glimpsing the dwarf planet’s now famous heart-shaped plain. Over its 46-year journey, Voyager 1 has ventured farthest from home, but a pellet-beam-powered craft could overtake it in just five years, Davoyan says.

He takes inspiration from Breakthrough Starshot, a $100 million initiative announced in 2016 by Russian-born philanthropist Yuri Milner and British cosmologist Stephen Hawking to use a 100-gigawatt laser beam to blast a miniature probe toward Alpha Centauri. (The star nearest our solar system, it resides “only” 4 light-years away.) The Starshot team is exploring how they could hurl a 1-gram craft attached to a lightsail into interstellar space, using the laser to accelerate it to 20 percent of the speed of light, which is ludicrously fast and would reduce travel time from millennia to decades. “I’m increasingly optimistic that later this century, humanity’s going to be including nearby stars in our reach,” says Pete Worden, Breakthrough Starshot’s executive director.

Mar 15, 2023

The Nobel Prize in Physics 1936

Posted by in category: physics

Was divided equally between Victor Franz Hess ‘for his discovery of cosmic radiation’ and Carl David Anderson ‘for his discovery of the positron’.

Mar 15, 2023

What If Space & Time Are Created By Our Brains?

Posted by in categories: business, physics, space

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Continue reading “What If Space & Time Are Created By Our Brains?” »

Mar 15, 2023

Power plasma with gigajoule energy turnover generated for eight minutes

Posted by in categories: nuclear energy, physics

😗


After successful recommissioning in autumn 2022, the Greifswald nuclear fusion experiment has surpassed an important target. In 2023, an energy turnover of 1 gigajoule was targeted. Now the researchers have even achieved 1.3 gigajoules and a new record for discharge time on Wendelstein 7-X: the hot plasma could be maintained for eight minutes.

Continue reading “Power plasma with gigajoule energy turnover generated for eight minutes” »

Mar 15, 2023

Karl Friston — World Renowned Researcher — Joins Verses Technologies as Chief Scientist

Posted by in categories: mathematics, physics, robotics/AI

He was ranked the number 1 most influential neuroscientist in the world by Semantic Scholar in 2016, and has received numerous awards and accolades for his work. His appointment as chief scientist of Verses not only validates their platform’s framework for advancing AI implementations but also highlights the company’s commitment to expanding the frontier of AI research and development.

Friston is short listed for a Nobel Prize, is one of the most cited scientists in human history with over 260,000 academic citations, and invented all of the mathematics behind the fMRI scan. As one pundit put it, “what Einstein was to physics, Friston is to Intelligence.”

Indeed Friston’s expertise will be invaluable in helping the company execute its vision of deploying a plethora of technologies working toward a smarter world through AI.

Mar 14, 2023

‘Time Reflections’ Finally Observed by Physicists After Decades of Searching

Posted by in category: physics

Walk through a maze of mirrors, you’ll soon come face to face with yourself. Your nose meets your nose, your fingertips touch at their phantom twins, stopped abruptly by a boundary of glass.

Most of the time, a reflection needs no explanation. The collision of light with the mirror’s surface is almost intuitive, its rays set on a new path through space with the same ease as a ball bouncing off a wall.

For over sixty years, however, physicists have considered a subtly different kind of reflection. One that occurs not through the three dimensions of space, but in time.

Mar 13, 2023

In a first, scientists show time reflection of electromagnetic waves

Posted by in categories: computing, physics

The breakthrough experiment could lead to low-energy, wave-based computers and new applications for wireless communications.

Researchers at the Advanced Science Research Center at the CUNY Graduate Center (CUNY ASRC) performed a breakthrough experiment in which they observed time reflections of electromagnetic signals in a tailored metamaterial.

Time reflection versus spatial reflection.

Continue reading “In a first, scientists show time reflection of electromagnetic waves” »

Mar 13, 2023

Up to 1,000,000 Times Faster: A Switch Made From a Single Molecule

Posted by in categories: computing, physics

An international team of researchers, including those from the University of Tokyo’s Institute for Solid State Physics, has made a groundbreaking discovery. They have successfully demonstrated the use of a single molecule named fullerene as a switch, similar to a transistor. The team achieved this by employing a precisely calibrated laser pulse, which allowed them to control the path of an incoming electron in a predictable manner.

The switching process enabled by fullerene molecules can be significantly faster than the switches used in microchips, with a speed increase of three to six orders of magnitude, depending on the laser pulses utilized. The use of fullerene switches in a network could result in the creation of a computer with capabilities beyond what is currently achievable with electronic transistors. Additionally, they have the potential to revolutionize microscopic imaging devices by providing unprecedented levels of resolution.

Over 70 years ago, physicists discovered that molecules emit electrons in the presence of electric fields, and later on, certain wavelengths of light. The electron emissions created patterns that enticed curiosity but eluded explanation. But this has changed thanks to a new theoretical analysis, the ramification of which could not only lead to new high-tech applications but also improve our ability to scrutinize the physical world itself.

Mar 12, 2023

Decoding the Brain

Posted by in categories: nanotechnology, neuroscience, physics

How does the brain retrieve memories, articulate words, and focus attention? Recent advances have provided a newfound ability to decipher, sharpen, and adjust electrical signals relevant to speech, attention, memory and emotion. Join Brian Greene and leading neuroscientists György Buzsáki, Edward Chang, Michael Halassa, Michael Kahana and Helen Mayberg for a thrilling exploration of how we’re learning to read and manipulate the mind.

The Kavli Prize recognizes scientists for their seminal advances in astrophysics, nanoscience, and neuroscience — topics covered in the series “The Big, the Small, and the Complex.” This series is sponsored by The Kavli Foundation and The Norwegian Academy of Science and Letters.

Continue reading “Decoding the Brain” »

Mar 12, 2023

The Nobel Prize in Physics 1973

Posted by in categories: materials, physics

Was divided, one half jointly to Leo Esaki and Ivar Giaever ‘for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively’ and the other half to Brian David Josephson ‘for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects’

Page 97 of 322First949596979899100101Last