Menu

Blog

Archive for the ‘particle physics’ category: Page 547

Nov 10, 2015

Invention of forge-proof ID to revolutionise security

Posted by in categories: particle physics, security

Scientists have discovered a way to authenticate or identify any object by generating an unbreakable ID based on atoms.

Read more

Nov 9, 2015

‘Electric Sails’ Could Propel Superfast Spacecraft

Posted by in categories: particle physics, robotics/AI, space travel

SANTA CLARA, California — Robotic spacecraft may ride the solar wind toward interstellar space at unprecedented speeds a decade or so from now.

Researchers are developing an “electric sail” (e-sail) propulsion system that would harness the solar wind, the stream of protons, electrons and other charged particles that flows outward from the sun at more than 1 million mph (1.6 million kilometers per hour).

“It looks really, really promising for ultra-deep-space exploration,” Les Johnson, of NASA’s Marshall Space Flight Center in Huntsville, Alabama, said of the e-sail concept here at the 100-Year Starship Symposium on Oct. 30. [Superfast Spacecraft Propulsion Concepts (Images)].

Read more

Nov 7, 2015

World’s Largest Fusion Reactor is About to Switch On

Posted by in categories: nuclear energy, particle physics

If “The Stellarator” sounds like an energy source of comic book legend to you, you’re not that far off. It’s the largest nuclear fusion reactor in the world, and it’s set to turn on later this month.

Housed at the Max Planck Institute in Germany, the Wendelstein 7-X (W7-X) stellarator looks more like a psychotic giant’s art project than the future of energy. Especially when you compare it with the reactor’s symmetrical, donut-shaped cousin, the tokamak. But stellarators and tokamaks work according to similar principles: In both cases, coiled superconductors are used to create a powerful magnetic cage, which serves to contain a gas as it’s heated to the ungodly temperatures needed for hydrogen atoms to fuse.

Continue reading “World’s Largest Fusion Reactor is About to Switch On” »

Nov 6, 2015

Scientists have finally measured the force that holds antimatter together

Posted by in categories: particle physics, space

For the first time, physicists in the US have managed to measure the force that attracts antimatter particles to each other. And, surprisingly, it’s not that different to the attractive force that holds regular matter together.

The results take us one step closer to understanding one of the biggest mysteries of our Universe: why there’s so much more matter than antimatter, and suggest that the imbalance isn’t a result of antiparticles not being able to ‘stick’ together.

For every particle that exists – electrons, protons, quarks – there’s an equal and opposite antiparticle, which has the opposite electrical charge and spin, and these antiparticles make up what’s known as antimatter. When the Universe was formed, physicists believe that equal amounts of antimatter and matter were produced, but today it’s very hard to find any naturally occurring antimatter left.

Read more

Nov 3, 2015

Ultrasensitive sensors made from boron-doped graphene

Posted by in categories: electronics, materials, particle physics

Ultrasensitive gas sensors based on the infusion of boron atoms into graphene—a tightly bound matrix of carbon atoms—may soon be possible, according to an international team of researchers from six countries.

Read more

Nov 2, 2015

Dumb Holes Leak

Posted by in categories: cosmology, particle physics, quantum physics

In August I went to Stephen Hawking’s public lecture in the fully packed Stockholm Opera. Hawking was wheeled onto the stage, placed in the spotlight, and delivered an entertaining presentation about black holes. The silence of the audience was interrupted only by laughter to Hawking’s well-placed jokes. It was a flawless performance with standing ovations.

In his lecture, Hawking expressed hope that he will win the Nobelprize for the discovery that black holes emit radiation. Now called “Hawking radiation,” this effect should have been detected at the LHC had black holes been produced there. But time has come, I think, for Hawking to update his slides. The ship to the promised land of micro black holes has long left the harbor, and it sunk – the LHC hasn’t seen black holes, has not, in fact, seen anything besides the Higgs.

But you don’t need black holes to see Hawking radiation. The radiation is a consequence of applying quantum field theory in a space- and time-dependent background, and you can use some other background to see the same effect. This can be done, for example, by measuring the propagation of quantum excitations in Bose-Einstein condensates. These condensates are clouds of about a billion or so ultra-cold atoms that form a fluid with basically zero viscosity. It’s as clean a system as it gets to see this effect. Handling and measuring the condensate is a big experimental challenge, but what wouldn’t you do to create a black hole in the lab?

Read more

Oct 30, 2015

Scientists design full-scale architecture for quantum computer in silicon

Posted by in categories: computing, particle physics, quantum physics

Australian scientists have designed a 3D silicon chip architecture based on single atom quantum bits, which is compatible with atomic-scale fabrication techniques — providing a blueprint to build a large-scale quantum computer.

Read more

Oct 29, 2015

China’s planning to build the world’s largest particle collider, twice the size of the LHC

Posted by in category: particle physics

China has announced that it will begin construction of the world’s largest particle collider in 2020. According to officials, the subterranean facility will be at least twice the size of the Large Hadron Collider (LHC) in Switzerland, and will endeavour to find out more about the mysterious Higgs boson.

The final concept design won’t be completed until the end of next year, so we don’t have many details to go on, but the collider is expected to smash protons and electrons together at seven times the energy levels of the LHC, generating millions of Higgs bosons in the process. Best of all, the facility will reportedly be available to the entire global scientific community.

“This is a machine for the world and by the world: not a Chinese one,” Wang Yifang, director of the Institute of High Energy Physics at the China Academy of Sciences, told the government-controlled publication, China Daily, this week.

Read more

Oct 28, 2015

‘Stellarator’ Reactor’s Strange Twisted Design Can Finally Make Fusion Power A Reality

Posted by in categories: nuclear energy, particle physics

Researchers are getting ready to turn on the world’s biggest ‘Stellarator’ fusion reactor. Called Wendelstein 7-X (W7-X), the reactor can uninterruptedly contain super-hot plasma for more than 30 minutes at a time. Scientists claim the rare design, which is contained in a giant lab in Greifswald, Germany, can finally help make fusion power a reality. Comprising super-hot plasma for long durations has been the Holy Grail for nuclear reactor designs, and can help researchers to deliver an inexhaustible source of power. Fusion reactors, for instance the W7-X, work by using two isotopes of hydrogen atoms — deuterium and tritium — and inserting that gas into a restraint vessel. Researcher then add energy that eliminates the electrons from their host atoms, creating what is described as an ion plasma, which discharges enormous amounts of energy.

Read more

Oct 28, 2015

A Simple Design Change Could Make a Thruster To Get Us to Mars

Posted by in categories: energy, particle physics, space travel

A Hall thruster is powering many of the satellites moving around Earth right now. It needs 100 million (yes, you read that right, 100 million) times less fuel than chemical thrusters. But it was never remotely sturdy enough to get anything to Mars—until now.

Typical chemical thrusters are pretty simple. Fuel combusts, gases shoot one way, and a rocket shoots the other way.

Ion thrusters are a little different. They contain charged electrodes, an anode and a cathode, and allow positively charged ions to shoot from the anode to the cathode. Thanks to momentum, the ions will “overshoot” the cathode. Under regular circumstances they’d be sucked back, but once they’ve cleared the cathode, they’re hit by a beam of electrons, neutralizing them and allowing them to go on their way without interference from the charged cathode. So the neutralized atoms shoot one way, and the rocket shoots another.

Read more