Menu

Blog

Archive for the ‘particle physics’ category: Page 467

Feb 1, 2019

Black hole plasma jets shine like cosmic lighthouses in these gorgeous images

Posted by in categories: computing, cosmology, particle physics

Stunning new images show how black holes produce tremendously bright jets millions of light-years long that can be seen across vast cosmic distances. The images were produced by a computer simulation and could help resolve an enduring mystery about how the jets form, the researchers behind the images said.

Despite their moniker, black holes aren’t always black. As a black hole consumes an object, gas and dust spins around the maw of the gravitational behemoth, and friction can heat the material on the edges to searing temperatures. This violent process creates lighthouse-like beams of charged particles that travel outward at near light speed, emitting radiation that can shine brighter than an entire galaxy. [11 Fascinating Facts About Our Milky Way Galaxy]

“They are like laser beams piercing the universe and allowing us to see black holes whose emission would otherwise be too dim to be detectable,” Alexander Tchekhovskoy, a computational astrophysicist at Northwestern University in Evanston, Illinois, told Live Science.

Continue reading “Black hole plasma jets shine like cosmic lighthouses in these gorgeous images” »

Feb 1, 2019

Scientists create strange matter that once filled Universe

Posted by in categories: cosmology, particle physics

The team created the so-called quark-gluon plasma by smashing packets of protons and neutrons into a much heavier gold atom in the PHENIX Detector particle collider at Brookhaven National Laboratory in Upton, New York. It is theorised that this matter filled the entire Universe shortly after the Big Bang when it was still too hot for particles to come together to make atoms.

Read more

Jan 30, 2019

Engineer’s ‘metallic wood’ has the strength of titanium and the density of water

Posted by in categories: nanotechnology, particle physics, transportation

High-performance golf clubs and airplane wings are made out of titanium, which is as strong as steel but about twice as light. These properties depend on the way a metal’s atoms are stacked, but random defects that arise in the manufacturing process mean that these materials are only a fraction as strong as they could theoretically be. An architect, working on the scale of individual atoms, could design and build new materials that have even better strength-to-weight ratios.

In a new study published in Nature Scientific Reports, researchers at the University of Pennsylvania’s School of Engineering and Applied Science, the University of Illinois at Urbana-Champaign, and the University of Cambridge have done just that. They have built a sheet of nickel with nanoscale pores that make it as strong as titanium but four to five times lighter.

The empty space of the pores, and the self-assembly process in which they’re made, make the porous metal akin to a , such as .

Continue reading “Engineer’s ‘metallic wood’ has the strength of titanium and the density of water” »

Jan 30, 2019

How does a quantum particle see the world?

Posted by in categories: particle physics, quantum physics, transportation

Researchers at the University of Vienna study the relevance of quantum reference frames for the symmetries of the world.

According to one of the most in physics, an observer on a moving train uses the same laws to describe a ball on the as an observer standing on the platform – are independent on the choice of a . Reference frames such as the train and the platform are physical systems and ultimately follow quantum-mechanical rules. They can be, for example, in a quantum state of superposition of different positions at once. So, what would the description of the ball look like for an observer on such a “quantum platform”? Researchers at the University of Vienna and the Austrian Academy of Sciences proved that whether an object (in our example, the ball) shows quantum features depends on the reference frame. The physical laws, however, are still independent of it. The results are published in Nature Communications.

Physical systems are always described relative to a reference frame. For example, a ball bouncing on a railway platform can be observed either from the platform itself or from a passing train. A fundamental principle of physics, the principle of General Covariance, states that the laws of physics which describe the motion of the ball do not depend on the reference frame of the observer. This principle has been crucial in the description of motion since Galileo and central to the development of Einstein’s theory of relativity. It entails information about symmetries of the laws of physics as seen from different reference frames.

Read more

Jan 29, 2019

New quantum system could help design better spintronics

Posted by in categories: computing, particle physics, quantum physics

Researchers have created a new testing ground for quantum systems in which they can literally turn certain particle interactions on and off, potentially paving the way for advances in spintronics.

Spin transport electronics have the potential to revolutionize electronic devices as we know them, especially when it comes to computing. While standard electronics use an electron’s charge to encode information, spintronic devices rely on another intrinsic property of the electron: its spin.

Spintronics could be faster and more reliable than conventional electronics, as spin can be changed quickly and these devices use less power. However, the field is young and there are many questions researchers need to solve to improve their control of spin information. One of the most complex questions plaguing the field is how the signal carried by particles with spin, known as spin current, decays over time.

Read more

Jan 29, 2019

Quantum structure of buckyballs

Posted by in categories: computing, particle physics, quantum physics

Buckyballs! We love them.


JILA researchers have measured hundreds of individual quantum energy levels in the buckyball, a spherical cage of 60 carbon atoms. It’s the largest molecule that has ever been analyzed at this level of experimental detail in the history of quantum mechanics. Fully understanding and controlling this molecule’s quantum details could lead to new scientific fields and applications, such as an entire quantum computer contained in a single buckyball.

Read more

Jan 26, 2019

Quantum Theory Bends The Limits of Physics, Showing Two-Way Signaling May Be Possible

Posted by in categories: particle physics, quantum physics

Quantum physics just beat classical physics again.

A single quantum particle can send a two-way signal, scientists have discovered — something that’s impossible in classical physics. That means a particle can essentially send messages to itself thanks to the whacky state of uncertainty known as superposition.

Superposition states that one particle can occupy two positions at once, and that’s how the two-way communication happens.

Continue reading “Quantum Theory Bends The Limits of Physics, Showing Two-Way Signaling May Be Possible” »

Jan 24, 2019

First geoengineering experiment to dim the sun on track for 2019

Posted by in categories: climatology, engineering, particle physics, space

© Getty Harvard scientists will attempt to replicate the climate-cooling effect of volcanic eruptions with a world-first solar geoengineering experiment set for early 2019.

The Stratospheric Controlled Perturbation Experiment (SCoPEx) will inject calcium carbonate particles high above the earth in an attempt to reflect some of the sun’s rays back into space.

It will likely mark the first time the controversial concept of dimming the sun — more scientifically known as stratospheric aerosol injection (SAI) — will be tested in the real world.

Continue reading “First geoengineering experiment to dim the sun on track for 2019” »

Jan 24, 2019

Scientists observe a new form of strange matter

Posted by in category: particle physics

To investigate this, the research group launched experiment to try to bind a kaon to a nucleus. To do the experiment, the researchers decided to use a helium-3 target—a nucleus made up of two protons and a single . By knocking out a neutron from the helium-3 target they were able to greatly reduce the energy of the kaon by using the recoil from the ejection and replacing the neutron with a kaon, forming a tightly bound with two protons and a single kaon.

“What is important about this research,” says Masahiko Iwasaki, the leader of the team, “is that we have shown that mesons can exist in nuclear matter as a real particle—like sugar that is not dissolved in water. This opens up a whole new way to look at and understand nuclei. Understanding such exotic nuclei will give us insights into the origin of the mass of nuclei, as well as to how matter forms in the core of neutron stars. We intend to continue experiments with heavier to further our understanding of the binding behavior of kaons.”

Read more

Jan 23, 2019

What’s inside nothing? This laser will rip it up to find out

Posted by in category: particle physics

Far from being empty, the vacuum of space could be brimming with mysterious virtual particles. We now have a machine powerful enough to tear it apart and see.

By Jon Cartwright

IMAGINE a place far from here, deep in the emptiness of space. This point is light years from Earth, vastly distant from any nebula, star or lonely atom. We have many words for what you would find in such a place: a void, a vacuum, a lacuna. In fact, this nothingness is a sea of activity.

Continue reading “What’s inside nothing? This laser will rip it up to find out” »