Menu

Blog

Archive for the ‘particle physics’ category: Page 448

Jun 8, 2019

5 Intriguing Theories about Dark Matter

Posted by in categories: cosmology, particle physics

Dark matter is a hypothetical invisible mass, which is responsible for the force of gravity among galaxies and other celestial bodies. Although researchers don’t have any concrete information about this puzzling entity, they did come up with a number of intriguing theories about this enigmatic mass. Following is a list of 5 dark matter theories that are quite interesting.

WIMPs are hypothetical particles that are thought to constitute dark matter. These heavy, electromagnetically neutral subatomic particles are hypothesized to make up 22% of the entire universe. They are thought to be heavy and slow-moving because if the dark matter particles were light and fast, they would not have clumped together in the density fluctuations from which galaxies and clusters of galaxies are formed. The precise nature of these particles is currently unknown and they do not abide by the laws of the Standard Model of Particle Physics.

Axions are believed to be neutral, slow-moving particles that are a billion times lighter than electrons. They rarely interact with light and this behavior has urged scientists to believe that Axion could be a building block of the dark matter. An attempt to detect these particles was made in April 2018 by the physicists from the University of Washington. The main idea of this theory suggests that if axions are constantly dashing towards Earth, powerful magnets may be able to convert some of the axions into microwave photons, which are easier to detect. Their work is commonly known as the Axion Dark Matter Experiment (ADMX) and this theory has not enjoyed much success, since then.

Continue reading “5 Intriguing Theories about Dark Matter” »

Jun 7, 2019

New evidence from LHC shows pentaquark has a molecule-like structure

Posted by in category: particle physics

A team of researchers working on the LHCb collaboration has found evidence showing that a pentaquark they have observed has a molecule-like structure. In their paper published in the journal Physical Review Letters, the group describes the evidence and the structure of the pentaquark they observed.

Four years ago, a team working at the Large Hadron Collider (LHC) observed what is known as a pentaquark by smashing protons into each other. Its existence had been theorized, but it was not until the right technology was deployed at the LHC that researchers were able to observe it with a reasonable degree of confidence. It was subsequently found to be a particle made up of four and one antiquark. (Quarks are indivisible particles that make up neutrons and protons.)

In this new effort, the researchers have gained a better perspective on the actual organization of the pentaquark. They report that they have nine times as much data from observations as they had when the pentaquark was first observed, so they have high confidence in their findings. They report that the pentaquark was made up of a three-quark baryon and a quark-antiquark meson, and that they were bound together in a way reminiscent of a molecule.

Continue reading “New evidence from LHC shows pentaquark has a molecule-like structure” »

Jun 7, 2019

Modelling reveals new insight into the electrical conductivity of ionic liquids

Posted by in category: particle physics

A collaborative investigation has revealed new insight into how room temperature ionic liquids (RTILs) conduct electricity, which may have a great potential impact for the future of energy storage.

The research focuses on the debate surrounding the physical mechanism of the electrical of RTILs. Their charged positive and negative organic ions lead them to be good conductors, but the conductivity seems paradoxical. Their high conductivity arises from their of charged ions within the liquid, but this density should also mean that the positive and negative ions are close enough to neutralise one another, creating new, which cannot support an electrical current. The modelling attempts to identify how conductivity is maintained in RTILs in light of these contradictory factors.

The research involved an international group of researchers, including Professor Nikolai Brilliantov of the University of Leicester and led by Professor Alexei Kornyshev of Imperial College London and Professor Guang Feng of the Huazhong University of Science and Technology.

Continue reading “Modelling reveals new insight into the electrical conductivity of ionic liquids” »

Jun 7, 2019

A quantum simulation of Unruh radiation

Posted by in categories: cosmology, particle physics, quantum physics

Researchers at the University of Chicago (UChicago) have recently reported an experimental observation of a matter field with thermal fluctuations that is in accordance with Unruh’s radiation predictions. Their paper, published in Nature Physics, could open up new possibilities for research exploring the dynamics of quantum systems in a curved spacetime.

“Our team at UChicago has been investigating a new quantum phenomena called Bose fireworks that we discovered two years ago,” Cheng Chin, one of the researchers who carried out the study, told Phys.org. “Our paper reports its hidden connection to a gravitational phenomenon called Unruh radiation.”

The Unruh effect, or Unruh radiation, is closely connected to Hawking radiation. In 1974, theoretical physicist Stephen Hawking predicted that the strong gravitational force near black holes leads to the emission of a thermal radiation of particles, which resembles the emitted by an oven. This phenomenon remains speculative with no direct experimental confirmation.

Continue reading “A quantum simulation of Unruh radiation” »

Jun 7, 2019

Quantum chemistry on quantum computers

Posted by in categories: chemistry, computing, particle physics, quantum physics

The special properties of quantum computers should make them ideal for accurately modelling chemical systems, Philip Ball discovers.

‘If you want to make a simulation of nature,’ the legendary physicist Richard Feynman advised in 1981, ‘you’d better make it quantum-mechanical.’ By ‘nature’, Feynman meant ‘stuff’: the particles and atoms and molecules we’re made from. His comment came in a talk published the following year, and is generally regarded as the founding text of quantum computing. It now looks even more prophetic than ever.

For although we are constantly told that the unique selling point of quantum computers is their enormous speed compared with the classical devices we currently use – a speed-up that exploits the counterintuitive laws of quantum mechanics – it seems that the most immediate benefit will be the one Feynman identified in the first place: we’ll be able to simulate nature better.

Continue reading “Quantum chemistry on quantum computers” »

Jun 7, 2019

To catch and reverse a quantum jump mid-flight

Posted by in categories: evolution, particle physics, quantum physics

In quantum physics, measurements can fundamentally yield discrete and random results. Emblematic of this feature is Bohr’s 1913 proposal of quantum jumps between two discrete energy levels of an atom. Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force while under strong continuous energy measurement2,3,4. The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? Here we answer this question affirmatively: we experimentally demonstrate that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable ‘flight’, by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results demonstrate that the evolution of each completed jump is continuous, coherent and deterministic. We exploit these features, using real-time monitoring and feedback, to catch and reverse quantum jumps mid-flight—thus deterministically preventing their completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory5,6,7,8,9 and should provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes in quantum error correction.

Read more

Jun 6, 2019

Humans ingest at least 50,000 plastic particles a year

Posted by in categories: food, particle physics

Food is contaminated with plastic, which means it’s going directly into our bodies.

If you have resisted giving up bottled water for any reason, this should change your mind. A new study estimates that people who drink bottled water ingest 90,000 additional plastic microplastic particles annually, compared to those who drink tap water, which puts only an extra 4,000 particles into their bodies.

This finding is part of a study that has estimated the number of plastic particles that humans ingest every year. Conducted by researchers at the University of Victoria, British Columbia, it pulled together data from 26 previous studies that had measured plastic in salt, beer, sugar, fish, shellfish, water, and urban air. Pairing this data with the U.S. dietary guidelines, the scientists calculated how many particles people were likely to consume annually. Their discovery? 50,000 for adults, 40,000 for children. When inhalation is factored in, the estimate jumps to between 74,000 and 121,000 for adults.

Continue reading “Humans ingest at least 50,000 plastic particles a year” »

Jun 6, 2019

Official LHC Results Have Finally Confirmed The Structure of Mysterious Pentaquarks

Posted by in category: particle physics

New results from the Large Hadron Collider have confirmed it. The mysterious five-quark subatomic particle — the pentaquark, only discovered a few years ago — really is composed of two sets of quarks.

One is a meson, a type of particle that contains a quark and antiquark pair; the other is a three-quark baryon: the subatomic particle that makes up most of the normal matter in the Universe, including protons and electrons.

This confirms that quarks aren’t just chucked together like a loose bag of marbles, but instead are structured more similarly to the way protons and neutrons are bound in an atomic nucleus — what the researchers call a ‘molecular’ state.

Continue reading “Official LHC Results Have Finally Confirmed The Structure of Mysterious Pentaquarks” »

Jun 6, 2019

Physicists Search for Monstrous Higgs Particle. It Could Seal the Fate of the Universe

Posted by in categories: particle physics, space

Without the Higgs, the Standard Model of particle physics comes crashing down.

Read more

Jun 5, 2019

The Quatron Transistor

Posted by in categories: computing, engineering, particle physics, quantum physics

Atomic BECs were first achieved in 1995. Although it has become easier to realize atomic BECs since their discovery, they still require very low temperatures for operation. For most purposes, this is too expensive and impractical. Alternatively, negatively charged quatrons are quasi-particles composed of a hole and three electrons which form a stable BEC when coupled to light in triple quantum layer structures in semiconductor microcavities. This allows for both the greater experimental control found in quantum optics, and the benefits of matter wave systems, such as superconductivity and coherence. Moreover, due to the extremely small effective mass of the quasi-particles, quatrons can be used to achieve superconducting BECs at room temperature.


The Create the Future Design Contest was launched in 2002 by the publishers of NASA Tech Briefs magazine to help stimulate and reward engineering innovation. The annual event has attracted more than 8,000 product design ideas from engineers, entrepreneurs, and students worldwide.

Read more