Menu

Blog

Archive for the ‘particle physics’ category: Page 396

May 20, 2020

Intermolecular vibrational energy transfer via microcavity strong light-matter coupling

Posted by in categories: biological, chemistry, engineering, nanotechnology, particle physics

Strong coupling between cavity photon modes and donor/acceptor molecules can form polaritons (hybrid particles made of a photon strongly coupled to an electric dipole) to facilitate selective vibrational energy transfer between molecules in the liquid phase. The process is typically arduous and hampered by weak intermolecular forces. In a new report now published on Science, Bo Xiang, and a team of scientists in materials science, engineering and biochemistry at the University of California, San Diego, U.S., reported a state-of-the-art strategy to engineer strong light-matter coupling. Using pump-probe and two-dimensional (2-D) infrared spectroscopy, Xiang et al. found that strong coupling in the cavity mode enhanced the vibrational energy transfer of two solute molecules. The team increased the energy transfer by increasing the cavity lifetime, suggesting the energy transfer process to be a polaritonic process. This pathway on vibrational energy transfer will open new directions for applications in remote chemistry, vibration polariton condensation and sensing mechanisms.

Vibrational energy transfer (VET) is a universal process ranging from chemical catalysis to biological signal transduction and molecular recognition. Selective intermolecular vibrational energy transfer (VET) from solute-to-solute is relatively rare due to weak intermolecular forces. As a result, intermolecular VET is often unclear in the presence of intramolecular vibrational redistribution (IVR). In this work, Xiang et al. detailed a state-of-the-art method to engineer intermolecular vibrational interactions via strong light-matter coupling. To accomplish this, they inserted a highly concentrated molecular sample into an optical microcavity or placed it onto a plasmonic nanostructure. The confined electromagnetic modes in the setup then reversibly interacted with collective macroscopic molecular vibrational polarization for hybridized light-matter states known as vibrational polaritons.

May 20, 2020

The Secrets behind Earth’s Multi-colored Glow

Posted by in categories: particle physics, space

Airglow is the constant, faint glow of Earth’s upper atmosphere created by the interaction between sunlight and particles in this region. The phenomenon is similar to auroras, but where auroras are driven by high-energy particles originating from the solar wind, airglow is energized by ordinary, day-to-day solar radiation.

Studying airglow gives scientists clues about the upper atmosphere’s temperature, density, and composition, and helps us trace how particles move through the region itself. Two NASA missions take advantage of our planet’s natural glow to study the upper atmosphere: ICON focuses on how charged and neutral gases in the upper atmosphere interact, while GOLD observes what’s driving change — the Sun, Earth’s magnetic field or the lower atmosphere — in the region.

By watching and imaging airglow, the two missions enable scientists to tease out how Earth’s weather and space intersect, dictating the region’s complex behavior. https://go.nasa.gov/2RJax4x

May 20, 2020

Researchers build hybrid quantum system

Posted by in categories: computing, particle physics, quantum physics

Physicists at the National Institute of Standards and Technology have boosted their control of the fundamental properties of molecules at the quantum level by linking or “entangling” an electrically charged atom and an electrically charged molecule, showcasing a way to build hybrid quantum information systems that could manipulate, store and transmit different forms of data.

Described in a Nature paper posted online May 20, the new NIST method could help build large-scale quantum computers and networks by connecting quantum bits (qubits) based on otherwise incompatible hardware designs and operating frequencies. Mixed-platform quantum systems could offer versatility like that of conventional computer systems, which, for example, can exchange data among an electronic processor, an optical disc, and a magnetic hard drive.

The NIST experiments successfully entangled the properties of an electron in the atomic ion with the rotational states of the molecule so that measurements of one particle would control the properties of the other. The research builds on the same group’s 2017 demonstration of quantum control of a molecule, which extended techniques long used to manipulate atoms to the more complicated and potentially more fruitful arena offered by molecules, composed of multiple atoms bonded together.

May 19, 2020

Galactic cosmic rays now available for study on Earth, thanks to NASA

Posted by in categories: biological, health, particle physics, space

Every once in a while I have a contentious discussion with someone about traveling to Mars, and the risks involved. One of the hardest risks to describe is the threat from galactic cosmic rays. Here is a short article about a new facility investigating the effects of galactic cosmic rays.

The very important point here is that we are not discussing electromagnetic radiation. These ions have been shown to sometimes penetrate spacecraft and inflict damage on astronauts brains. Earthlings do not have to worry about these as much because we have a magnetosphere that shields us from ions.


To better understand and mitigate the health risks faced by astronauts from exposure to space radiation, we ideally need to be able to test the effects of Galactic Cosmic Rays (GCRs) here on Earth under laboratory conditions. An article publishing on May 19, 2020 in the open access journal PLOS Biology from Lisa Simonsen and colleagues at the NASA Langley Research Center, USA, describes how NASA has developed a ground-based GCR Simulator at the NASA Space Radiation Laboratory (NSRL), located at Brookhaven National Laboratory.

Continue reading “Galactic cosmic rays now available for study on Earth, thanks to NASA” »

May 19, 2020

Team in Germany observes Pauli crystals for the first time

Posted by in categories: particle physics, quantum physics

A team of researchers at Heidelberg University has succeeded in building an apparatus that allowed them to observe Pauli crystals for the first time. They have written a paper describing their efforts and have uploaded it to the arXiv preprint server.

The Pauli exclusion principle is quite simple: It asserts that no two fermions can have the same quantum number. But as with many principles in physics, this simple assertion has had a profound impact on quantum mechanics. Looking more closely at the principle reveals that it also suggests that no two fermions can occupy the same . And that means that electrons must have different orbits around a nucleus, and by extension, it explains why atoms have volume. This understanding of the self-ordering of fermions has led to other findings—for instance, that they should form crystals with a specific geometry, which are now known as Pauli crystals. When this observation was first made, it was understood that such crystal formation could only happen under unique circumstances. In this new effort, the researchers have resolved the circumstances, and in so doing, have built an apparatus that allowed them to observe Pauli crystals for the first time.

The work involved a setup that included lasers that were able to trap a cloud of lithium-6 atoms supercooled to their lower energy state, forcing them to adhere to the exclusion principle, in a one-atom thick flat layer. The team then used a technique that allowed them to photograph the atoms when they were in a particular given state—and only those atoms. They then used the camera to take 20,000 pictures, but used only those that showed the right number of atoms—-indicating that they were adhering to the Pauli exclusion principle. Next, the team processed the remaining images to remove the impact of overall momentum in the atom cloud, rotated them properly, and then superimposed thousands of them, revealing the momentum distribution of the individual —that was the point at which crystal structures began to emerge in the photographs, just as was predicted by theory. The researchers note that their technique could also be used to study other effects related to fermion-based gases.

May 18, 2020

How X-Ray Images Of Ancient Microfossils Will Help Identify Life On Mars

Posted by in categories: alien life, particle physics

Researchers use energy from a next-generation particle accelerator to probe microfossils inside ancient Earth rocks.

May 17, 2020

Quantum Brakes to Learn About the Forces Within Molecules

Posted by in categories: particle physics, quantum physics

Physicists have measured the flight times of electrons emitted from a specific atom in a molecule upon excitation with laser light. This has enabled them to measure the influence of the molecule itself on the kinetics of emission.

Photoemission – the release of electrons in response to excitation by light – is one of the most fundamental processes in the microcosm. The kinetic energy of the emitted electron is characteristic for the atom concerned, and depends on the wavelength of the light employed. But how long does the process take? And does it always take the same amount of time, irrespective of whether the electron is emitted from an individual atom or from an atom that is part of a molecule? An international team of researchers led by laser physicists in the Laboratory for Attosecond Physics (LAP) at LMU Munich and the Max Planck Institute of Quantum Optics (MPQ) in Garching has now probed the influence of the molecule on photoemission time.

The theoretical description of photoemission in 1905 by Albert Einstein marked a breakthrough in quantum physics, and the details of the process are of continuing interest in the world of science and beyond. How the motions of an elementary quantum particle such as the electron are affected within a molecular environment has a significant bearing on our understanding of the process of photoemission and the forces that hold molecules together.

May 17, 2020

Our Sun is an active star

Posted by in categories: particle physics, space

It releases a constant stream of material called the solar wind, along with more occasional bursts of particles, material and energy that flow out into the solar system. Here on Earth, the effects of those events can range from issues like satellite problems and communications failures to stunning natural phenomena like airglow and auroras.

Here are a few ways we study the Sun, its effects on Earth, and everything in between to better understand when and how these events happen. Learn more about our research at http://nasa.gov/sunearth.

May 16, 2020

Rapid growth of new atmospheric particles

Posted by in category: particle physics

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

May 16, 2020

Physicists Just Built The First Working Prototype Of A ‘Quantum Radar’

Posted by in categories: particle physics, quantum physics

Quantum entanglement – that strange but potentially hugely useful quantum phenomenon where two particles are inextricably linked across space and time – could play a major role in future radar technology.

In 2008, an engineer from MIT devised a way to use the features of entanglement to illuminate objects while using barely any photons. In certain scenarios, such technology promises to outperform conventional radar, according to its makers, particularly in noisy thermal environments.

Now, researchers have taken the idea much further, demonstrating its potential with a working prototype.