Menu

Blog

Archive for the ‘particle physics’ category: Page 365

Oct 5, 2020

Single‐Atom Catalytic Materials for Advanced Battery Systems

Posted by in categories: materials, particle physics

Single‐atom catalytic materials with atomic sizes, good conductivity, and individual catalytic sites are designed for advanced battery systems, including lithium-sulfur batteries, zinc-air batteries,…

Oct 5, 2020

CERN Timepix Technology Helps Rediscover Lost Painting by the Great Renaissance Master, Raphael

Posted by in categories: media & arts, particle physics, robotics/AI

CERN’s Timepix particle detectors, developed by the Medipix2 Collaboration, help unravel the secret of a long-lost painting by the great Renaissance master, Raphael. 500 years ago, the Italian painter Raphael passed away, leaving behind him many works of art, paintings, frescoes, and engravings.


CERNs Timepix particle detectors, developed by the Medipix2 Collaboration, help unravel the secret of a long-lost painting by the great Renaissance master, Raphael.

500 years ago, the Italian painter Raphael passed away, leaving behind him many works of art, paintings, frescoes, and engravings. Like his contemporaries Michelangelo and Leonardo da Vinci, Raphael’s work made the joy of imitators and the greed of counterfeiters, who bequeathed us many copies, pastiches, and forgeries of the great master of the Renaissance.

Continue reading “CERN Timepix Technology Helps Rediscover Lost Painting by the Great Renaissance Master, Raphael” »

Oct 4, 2020

Last chance for WIMPs: physicists launch all-out hunt for dark-matter candidate

Posted by in category: particle physics

Over the coming months, operations will begin at three existing underground detectors — in the United States, Italy and China — that search for dark-matter particles by looking for interactions in supercooled vats of xenon. Using a method honed over more than a decade, these detectors will watch for telltale flashes of light when the nuclei recoil from their interaction with dark-matter particles.


Researchers have spent decades searching for the elusive particles — a final generation of detectors should leave them no place to hide.

Oct 4, 2020

Hubble Detects Smallest Known Dark Matter Clumps

Posted by in categories: cosmology, particle physics

Using NASA’s Hubble Space Telescope and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known. This result confirms one of the fundamental predictions of the widely accepted “cold dark matter” theory.

All galaxies, according to this theory, form and are embedded within clouds of dark matter. Dark matter itself consists of slow-moving, or “cold,” particles that come together to form structures ranging from hundreds of thousands of times the mass of the Milky Way galaxy to clumps no more massive than the heft of a commercial airplane. (In this context, “cold” refers to the particles’ speed.)

The Hubble observation yields new insights into the nature of dark matter and how it behaves. “We made a very compelling observational test for the cold dark matter model and it passes with flying colors,” said Tommaso Treu of the University of California, Los Angeles (UCLA), a member of the observing team.

Oct 4, 2020

A new technique for the production of plasmonics devices

Posted by in categories: nanotechnology, particle physics

Research laboratories are constantly developing new materials that are expected to exhibit novel properties bound to revolutionize this or that technology. But it’s not enough to simply create these materials; scientists also need to find efficient methods of processing and fine-tuning them.

Moreover, composites are often made via the addition of nanoparticles into a base matrix, which is why it is necessary to find a way of manipulating the location, size, and concentration rate of these particles that would exclude even the smallest deviations that are invisible to the human eye.

Researchers from ITMO University have improved on the technique of local processing of composites based on nanoporous glass with addition of silver and copper. Now, it is possible to predict with high accuracy the optical properties of a plasmonic component during its treatment.

Oct 3, 2020

The role of solid state chemistry in the development of metal-ion batteries

Posted by in categories: chemistry, particle physics, sustainability

Professors from the Skoltech Center for Energy Science and Technology (CEST), Lomonosov Moscow State University and College de France shared their vision on the importance of solid state chemistry in advancements currently awaited from contemporary and prospective metal-ion batteries. The opinion was contributed as an invited review to Nature Communications.

Metal-ion batteries are the main drivers enabling a smooth transfer to renewables and green energy for a sustainable planet. The artfully designed electrode materials have greatly contributed to the development of high-performance Li-ion batteries that was eventually hallmarked by the 2019 Nobel Prize, which had signified the role solid state chemistry. Targeted design of novel metal-ion battery materials to bring the technology to the next level clearly stands as a great challenge for today’s chemistry community.

The individual properties of atoms and ions encoded in the Periodic Table along with the fundamental trends and principles multiplied by further levels of complexity constitute multitude of possible combinations for scientists to find new battery electrodes. Obviously, the researchers need solid guidelines while searching through this huge parameter space for the best chemical combinations and structures.

Oct 3, 2020

Why some physicists really think there’s a ‘mirror universe’ hiding in space-time

Posted by in categories: cosmology, particle physics

What happens if you turn space-time upside-down?


A cycle of false tabloid claims that NASA had discovered a “parallel universe” papered over a far deeper story about particles, the cosmos, and what happens when you turn spacetime upside-down.

Oct 2, 2020

Study sets limits on the flux of heavy compact objects using data from the Pi of the Sky project

Posted by in category: particle physics

Strangelets, and specifically nuclearites, their heavy species, are very dense, compact and potentially fast objects made of large and roughly equal numbers of up, down and strange quarks, which may inhabit the universe. Their existence was first hypothesized by Edward Witten back in 1984. These objects have never been detected before and have so far attracted less attention than meteors, perhaps due to their lack of relevance in particle physics.

At the end of 1984, theoretical physicists Alvaro De Rujula and Sheldon Lee Glashow introduced the idea that, when crossing the Earth’s atmosphere, nuclearites produce light in a similar way to meteors, losing very little of their energy in the process. If their prediction is right, teams working at meteor observatories should be able to confirm whether these objects exist or not. So far, however, very few researchers have conducted studies investigating this possibility.

A different cosmic phenomenon rooted in particle physics, known as ultra-high energy cosmic rayssome of the same theorized characteristics of nuclearites. These cosmic rays, in fact, also produce trails of light in the atmosphere, although they do this via a different physical process. In addition, they move much faster than nuclearities and are usually observed in the ultraviolet (UV) band.

Oct 2, 2020

With to-do list checked off, U.S. physicists ask, ‘What’s next?’

Posted by in category: particle physics

So next week, as U.S. particle physicists start to drum up new ideas for the next decade in a yearlong Snowmass process—named for the Colorado ski resort where such planning exercises once took place—they have no single big project to push for (or against). And in some subfields, the next steps seem far less obvious than they were 10 years ago. “We have to be much more open minded about what particle physics and fundamental physics are,” says Young-Kee Kim of the University of Chicago and chair of the American Physical Society’s division of particles and fields, which is sponsoring the planning exercise.


Giant neutrino experiment is the only sure thing for the field.

Oct 2, 2020

Physicists build circuit that generates clean, limitless power from graphene

Posted by in categories: computing, particle physics

A team of University of Arkansas physicists has successfully developed a circuit capable of capturing graphene’s thermal motion and converting it into an electrical current.

“An energy-harvesting circuit based on could be incorporated into a chip to provide clean, limitless, low-voltage power for small devices or sensors,” said Paul Thibado, professor of physics and lead researcher in the discovery.

Continue reading “Physicists build circuit that generates clean, limitless power from graphene” »