Menu

Blog

Archive for the ‘nuclear energy’ category: Page 115

Jul 18, 2018

More Energy Storage Looming For Wind Power

Posted by in categories: nuclear energy, solar power, sustainability

It wasn’t that long ago that solar power and wind power were labeled as marginal, ‘green’ electricity, but in the last five years or so they have become much more affordable and economically more feasible than conventional sources like coal and nuclear.

What supported solar along the way partly was the emergence of energy storage in the form of battery systems. Electricity can now be made by solar power systems and the excess can be stored for usage at night or on less sunny days. At least, solar power has been paired successfully with energy storage, and it is catching up with solar power. The cost of this newish technology is dropping, “The overall estimated cost fell 32% in 2015 and 2016, according to the 2017 GTM Reseach utility-scale storage report. That will slow over the next five years, GTM reported. But battery storage is — in certain places and applications — on its way to cost-competitiveness.”

According to Lazard, it could drop another 36% between 2018 and 2022. The UC-Berkeley research study, “Energy Storage Deployment and Innovation for the Clean Energy Transition,” predicted lithium-ion batteries could hit the $100 per kilowatt-hour mark in 2018.

Continue reading “More Energy Storage Looming For Wind Power” »

Jul 17, 2018

No more zigzags: Scientists uncover mechanism that stabilizes fusion plasmas

Posted by in categories: nuclear energy, physics

Sawtooth swings—up-and-down ripples found in everything from stock prices on Wall Street to ocean waves—occur periodically in the temperature and density of the plasma that fuels fusion reactions in doughnut-shaped facilities called tokamaks. These swings can sometimes combine with other instabilities in the plasma to produce a perfect storm that halts the reactions. However, some plasmas are free of sawtooth gyrations thanks to a mechanism that has long puzzled physicists.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have recently produced complex simulations of the process that may show the physics behind this , which is called “ pumping.” Unraveling the process could advance the development of fusion energy.

Read more

Jul 14, 2018

The Nuclear Reactor Renaissance: Space Exploration and National Security

Posted by in categories: climatology, nuclear energy, security, solar power, space travel, sustainability

The nuclear power sector is seeing a resurgence in innovation, supported by new policies and emerging technologies. The general public and various governments are starting to grasp the value of nuclear power as an alternative, sustainable energy source. Unlike renewables, such as wind and solar power, nuclear energy is not dependent on weather conditions for power generation, having a capacity factor of over 90 percent. Nuclear power is also more eco-friendly than natural gas and coal and its “carbon-free” attributes are seen as critical in the fight against climate change.

For decades, advancements in the nuclear power sector have been incremental and focused largely on making systems “walk away safe.” Today, the industry is pushing the boundaries and exploring applications for nuclear power in ways that have never before been considered.

BWXT is at the forefront of this nuclear renaissance. This 6,000-employee company operates on the model of letting capital drive strategy. BWXT is constantly evaluating new ways to ensure workers, funding, and policies are utilized in the most effective way possible. The company also analyzes the needs of numerous other industries to determine how nuclear power could provide innovative solutions.

Continue reading “The Nuclear Reactor Renaissance: Space Exploration and National Security” »

Jul 13, 2018

Nuclear excitation by electron capture seen at long last

Posted by in categories: innovation, nuclear energy

Breakthrough could lead to new type of energy source.

Read more

Jul 10, 2018

Turbo inductor cogeneration with MSR nuclear can economically replace oil

Posted by in categories: engineering, nuclear energy, space travel

Bucknell has led advanced engineering teams at Chrysler and General Motors for three production high performance engine families. Was Senior Propulsion Engineer for the Raptor full-flow staged combustion methalox rocket at Space Exploration Technologies then Senior Propulsion Scientist for Divergent3D developing vehicle technologies.

In 2017, he described how high temperature (820−1000 degree celsius) nuclear power plants can solve produce synthetic fuel to replace oil.

Continue reading “Turbo inductor cogeneration with MSR nuclear can economically replace oil” »

Jul 9, 2018

X-SpaceX Raptor designer has ready for development designs for nuclear rocket that will be up to 7 times better than BFR

Posted by in categories: nuclear energy, solar power, space travel, sustainability

John Bucknell created the pre-conceptual design for the SpaceX Raptor engine. It will be the advanced full-flow staged combustion rocket engine for the SpaceX BFR. He designed and built the subscale Raptor rocket for proof of concept testing able to test eighty-one configurations of main injector.

John Bucknell says the nuclear turbo rocket technology and his designs are ready for development. The air-breathing nuclear thermal rocket will enable 7 times more payload fraction to be delivered to low-earth orbit and it will have 6 times the ISP (rocket fuel efficiency) as chemical rockets. The rocket will have two to three times the speed and performance of chemical rockets for missions outside of the atmosphere.

The fully reusable nuclear rocket will be a single stage to orbit system which will be able to make space-based solar power several times cheaper than coal power. Using the 11-meter diameter version of this rocket to build space-based solar power will enable solar power at less than 2 cents per kilowatt-hour.

Continue reading “X-SpaceX Raptor designer has ready for development designs for nuclear rocket that will be up to 7 times better than BFR” »

Jul 6, 2018

A Double First in China for Advanced Nuclear Reactors

Posted by in category: nuclear energy

Safer reactors designed in the US and Europe have achieved their power grid debuts in China. It is a long-awaited milestone for their now-troubled designers, but may be too little too late for buyers.

Read more

Jul 3, 2018

Aneutronic Fusion Reactor

Posted by in category: nuclear energy

Nuclear fusion reactor — clean, safe, and environmentally friendly atomic energy.

Read more

Jun 29, 2018

Tokomak Energy UK high temperature superconductors and better magnet path to commercial nuclear fusion

Posted by in categories: materials, nuclear energy

Tokamak Energy of the UK has built the ST40 prototype fusion reactor and they aim to reach 100 million degrees celsius by the end of 2018. They have already reached 15 million degrees.

Read more

Jun 29, 2018

Electricity from germs could be the next big thing, say Israeli researchers

Posted by in categories: biotech/medical, engineering, habitats, nanotechnology, nuclear energy, solar power, sustainability

You can generate electricity from oil, you can produce it from natural gas, you can make it from nuclear energy, and you can channel it from the sun, via solar energy conversion systems. You can even generate electricity from photosynthetic bacteria, also known as cyanobacteria, based on a new innovation developed at the Technion. As published in a study in the journal, Nature Communications, the Technion researchers have developed an energy-producing system that exploits both the photosynthesis and respiratory processes that cyanobacteria undergo, with the harvested energy leveraged to generate electricity based on hydrogen.

The study was conducted by three Technion faculty members: Professor Noam Adir from the Schulich Faculty of Chemistry, Professor Gadi Schuster from the Faculty of Biology, and Professor Avner Rothschild, from the Faculty of Materials Science and Engineering. The work involved collaboration between Dr. Gadiel Saper and Dr. Dan Kallmann, as well as colleagues from Bochum, Germany and the Weizmann Institute of Science. It was supported by various bodies, including the Nancy and Stephen Grand Technion Energy Program (GTEP), the Russell Berrie Nanotechnology Institute (RBNI), the Technion Hydrogen Technologies Research Lab (HTRL), the Adelis Foundation, the Planning and Budgeting Committee’s I-CORE program, the Israel Science Foundation, the USA-Israel Binational Science Fund (BSF) and the German research fund (DFG-DIP).

Scientists have long considered cyanobacteria a possible energy source. Cyanobacteria belong to a family of bacteria common to lakes, seas, and many other habitats. The bacteria use photosynthetic mechanisms that enable them to generate energy from sunlight. They also generate energy in the dark, via respiratory mechanisms based on digestion and degradation of sugar.

Continue reading “Electricity from germs could be the next big thing, say Israeli researchers” »