Menu

Blog

Archive for the ‘neuroscience’ category: Page 887

Dec 26, 2016

Scientists say your “mind” isn’t confined to your brain, or even your body

Posted by in category: neuroscience

You might wonder, at some point today, what’s going on in another person’s mind. You may compliment someone’s great mind, or say they are out of their mind. You may even try to expand or free your own mind.

But what is a mind? Defining the concept is a surprisingly slippery task. The mind is the seat of consciousness, the essence of your being. Without a mind, you cannot be considered meaningfully alive. So what exactly, and where precisely, is it?

Traditionally, scientists have tried to define the mind as the product of brain activity: The brain is the physical substance, and the mind is the conscious product of those firing neurons, according to the classic argument. But growing evidence shows that the mind goes far beyond the physical workings of your brain.

Continue reading “Scientists say your ‘mind’ isn’t confined to your brain, or even your body” »

Dec 26, 2016

New Mechanism of How Brain Networks Form Identified

Posted by in categories: biotech/medical, genetics, neuroscience, robotics/AI

Excellent read on the brain’s inhibitory circuits v. excitatory circuits when involving the processing of smells.


Summary: Inhibitory neurons form neural networks that become broader as they mature, a new study reports.

Source: Baylor College of Medicine.

Continue reading “New Mechanism of How Brain Networks Form Identified” »

Dec 26, 2016

Biology’s ‘breadboard’

Posted by in categories: biological, computing, food, neuroscience

Nice; using gene regulatory protein from yeast as a method for reducing the work required for making cell-specific perturbations.


The human brain, the most complex object in the universe, has 86 billion neurons with trillions of yet-unmapped connections. Understanding how it generates behavior is a problem that has beguiled humankind for millennia, and is critical for developing effective therapies for the psychiatric disorders that incur heavy costs on individuals and on society. The roundworm C elegans, measuring a mere 1 millimeter, is a powerful model system for understanding how nervous systems produce behaviors. Unlike the human brain, it has only 302 neurons, and has completely mapped neural wiring of 6,000 connections, making it the closest thing to a computer circuit board in biology. Despite its relative simplicity, the roundworm exhibits behaviors ranging from simple reflexes to the more complex, such as searching for food when hungry, learning to avoid food that previously made it ill, and social behavior.

Understanding how this dramatically simpler nervous system works will give insights into how our vastly more complex brains function and is the subject of a paper published on December 26, 2016, in Nature Methods.

Read more

Dec 26, 2016

Beyond Artificial Intelligence

Posted by in categories: neuroscience, robotics/AI

Krish Gopalakrishnan, N. Dayasindhu — It is great, but AI cannot replicate human intelligence or improve quality of human life as computational neuroscience can„ magazine 26 December 2016, 35 years anniversary special, artificial intelligence, technology, information technology.

Read more

Dec 25, 2016

We’ll have an Alzheimer’s drug by 2025, experts say

Posted by in categories: biotech/medical, neuroscience

But experts across the field say hope is not lost. They believe we will have some form of drug against the disease by 2025, albeit most likely a pilot version that will need to be upgraded.

Read more

Dec 25, 2016

Russia offers technology to keep hackers at bay

Posted by in categories: cybercrime/malcode, encryption, finance, government, neuroscience, quantum physics

Russian Quantum Center (RQC) said that it is ready to collaborate with India and offer its quantum technology that will prevent hackers from breaking into bank accounts. RQC plans to offer ‘quantum cryptography’ that could propel India to the forefront of hack proof communication in sectors such as banking and national and homeland security.

“We are ready to work with Indian colleagues. It (the technology) can’t be bought from the United States as it deals with the government and security,” said Ruslan Yunusov, chief executive at RQC, in an interview.

Established by Russia’s largest global technology hub, Skolkovo in 2010, RQC conducts scientific research that could lead to a new class of technologies. These include developing ‘unbreakable cryptography’ for the banks and the government organisations. It also involves research in areas such as materials with superior properties and new systems for ultrasensitive imaging of the brain. The research is mostly funded by the government money.

Continue reading “Russia offers technology to keep hackers at bay” »

Dec 24, 2016

A Man Pays a Painful Price for Reliving His Happiest Memories in Scifi Short Again™

Posted by in category: neuroscience

The premise of Mitch Glass’ short Again™ is almost an anti–Eternal Sunshine of the Spotless Mind. A heartbroken young man becomes obsessed with reliving his happiest memories with his ex-girlfriend, vividly conjured via a new brain-meddling technology. Is there a catch? Of course there is—and a twist, too.

Read more

Dec 22, 2016

Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults

Posted by in categories: biotech/medical, life extension, neuroscience

Cognitive training interventions are a promising approach to mitigate cognitive deficits common in aging and, ultimately, to improve functioning in older adults. Baseline neural factors, such as properties of brain networks, may predict training outcomes and can be used to improve the effectiveness of interventions. Here, we investigated the relationship between baseline brain network modularity, a measure of the segregation of brain sub-networks, and training-related gains in cognition in older adults. We found that older adults with more segregated brain sub-networks (i.e., more modular networks) at baseline exhibited greater training improvements in the ability to synthesize complex information. Further, the relationship between modularity and training-related gains was more pronounced in sub-networks mediating “associative” functions compared with those involved in sensory-motor processing. These results suggest that assessments of brain networks can be used as a biomarker to guide the implementation of cognitive interventions and improve outcomes across individuals. More broadly, these findings also suggest that properties of brain networks may capture individual differences in learning and neuroplasticity.

Trail Registration: ClinicalTrials.gov, NCT#00977418

Citation: Gallen CL, Baniqued PL, Chapman SB, Aslan S, Keebler M, Didehbani N, et al. (2016) Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults. PLoS ONE 11(12): e0169015. doi:10.1371/journal.pone.0169015

Continue reading “Modular Brain Network Organization Predicts Response to Cognitive Training in Older Adults” »

Dec 22, 2016

Using graphene to detect brain cancer cells

Posted by in categories: biotech/medical, neuroscience

Graphene has already proven its importance to brain implants as well as other Synbio technology.


Brain cell culture. Left: Normal astrocyte brain cell; Right: cancerous Glioblastoma Multiforme (GBM) version, imaged by Raman spectrography. (credit: B. Keisham et al./ACS Appl. Mater. Interfaces)

By interfacing brain cells with graphene, University of Illinois at Chicago researchers have differentiated a single hyperactive Glioblastoma Multiforme cancerous astrocyte cell from a normal cell in the lab — pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.

Continue reading “Using graphene to detect brain cancer cells” »

Dec 22, 2016

Young microglia restore amyloid plaque clearance of aged microglia

Posted by in categories: biotech/medical, neuroscience

Rejuvenating the immune system offers hope for Alzheimer’s patients and removal of plaques.


Alzheimer′s disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co‐culturing organotypic brain slices from up to 20‐month‐old, amyloid‐bearing AD mouse model (APPPS1) and young, neonatal wild‐type (WT) mice. Surprisingly, co‐culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.

Read more

Page 887 of 1,001First884885886887888889890891Last