Menu

Blog

Archive for the ‘mobile phones’ category: Page 209

Jul 30, 2016

Chip-enhanced political candidates coming soon

Posted by in categories: biotech/medical, computing, cyborgs, geopolitics, internet, mobile phones, terrorism, transhumanism

My new OpEd article for the San Francisco Chronicle on chip implants and transhumanism: http://www.sfchronicle.com/opinion/openforum/article/Chip-en…694149.php They also did a 2-minute video of my presidential campaign: http://bit.ly/2aERJxc


The implant can do all sorts of things, like unlock my electronic house door, act as my password on my computer, and even send a text message when people with the right phone and app come near me. Keys, credit cards, ID cards, medical records and passwords — these are all things that can be replaced by a tiny chip in the hand. If having technology in your bodies sounds wacky, consider the millions of people around the world who have artificial hips or dentures, or deaf people who use cochlear implants to hear sounds. […] former Vice President Dick Cheney famously asked to have the Wi-Fi on his heart valve turned off, just in case terrorists tried to hack it. A company in Sylmar (Los Angeles County) called Second Sight already has FDA approval for bionic eyes.

Read more

Jul 29, 2016

How the most connected hospitals will use chatbots

Posted by in categories: biotech/medical, food, health, life extension, mobile phones, robotics/AI

Sure, chatbots are useful for service industries like hospitality and food delivery, but in health care? Some groups are testing the use of chatbots to retrieve medical information from within a messaging app. At first glance, that seems a bit impersonal, but a closer look reveals a wide range of use cases where bots could make your next visit to the hospital, doctor’s office, or pharmacy faster and more effective.

Let’s run this back a bit. If you’re not familiar with bots, here’s a brief explanation. Bots are software applications that run automated tasks or scripts that serve as shortcuts for completing a certain job, but they do it faster (a lot faster) and with verve. And in health care, we spend a lot of time spent generating and retrieving information.

By putting a trained army of bots inside an application — smartphone, desktop, whatever-top — health care workers can rapidly improve throughput by simply cutting out a bunch of steps. That’s something most care providers today would welcome, especially with millions of new people entering the system as a result of the Affordable Care Act and the aging of baby boomers. With the crush of increased data entry and new regulations, costs and rote work are skyrocketing.

Continue reading “How the most connected hospitals will use chatbots” »

Jul 29, 2016

NextBit Robin: A cloud storage smartphone for the future

Posted by in categories: computing, mobile phones

A smartphone with direct cloud integration to enable the automatic switch over to cloud when space on the phone runs out.


Cloud computing is the future and unleasing its power on your smartphone is the next big thing. San Francisco-based device maker Nextbit has made a quick switch with its flagship “Cloud first” Android device Robin in India. IANS | Jul 29, 2016, 09.01 AM IST

Follow ETTelecom.

Continue reading “NextBit Robin: A cloud storage smartphone for the future” »

Jul 29, 2016

Apple Advances Work on Quantum Dot Displays for Future Macs, iOS Devices & Possible TV

Posted by in categories: energy, mobile phones, quantum physics

Apple and Q-Dots.


While we know that Apple’s next display shift will be to OLED for their 2017 Anniversary edition iPhone, Apple is always looking to the next wave technology just on the horizon. So what’s beyond OLED? At the moment, many think the next trend points to Quantum Dot LED or QDLED. While the structure of a QLED is very similar to OLED technology, the difference is that the light emitting centers are cadmium selenide nanocrystals, or quantum dots. Theoretically, the advantages to this type of display is that it could reportedly deliver brighter ‘pure color’ and consumes less power, in fact close to 50% less power. The technology is also ideal for consumer devices that demand a flexible display. When Apple first introduced their vision of an Apple Watch in 2013, they presented it with a ‘continuous’ display that completely wraps around a users wrist as noted in the patent figure below. A QDLED type of display would allow such a form factor to come to market.

2AA 88 CONTINUOUS DISPLAY COMMUNICATION BRACELET

Continue reading “Apple Advances Work on Quantum Dot Displays for Future Macs, iOS Devices & Possible TV” »

Jul 28, 2016

Levitating Wireless Phone Charger

Posted by in category: mobile phones

This might be the coolest phone charger ever.

Read more

Jul 28, 2016

Moving beyond semiconductors for next-generation electric switches

Posted by in categories: energy, mathematics, mobile phones, quantum physics, supercomputing

Computers use switches to perform calculations. A complex film with “quantum wells”—regions that allow electron motion in only two dimensions—can be used to make efficient switches for high-speed computers. For the first time, this oxide film exhibited a phenomenon, called resonant tunneling, in which electrons move between quantum wells at a specific voltage. This behavior allowed an extremely large ratio (about 100,000:1) between two states, which can be used in an electronic device as an ON/OFF switch to perform mathematical calculations (Nature Communications, “Resonant tunneling in a quantum oxide superlattice”).

Quantum wells

Efficient control of electron motion can be used to reduce the power requirements of computers. “Quantum wells” (QW) are regions that allow electron motion in only two dimensions. The lines (bottom) in the schematic show the probability of finding electrons in the structure. The structure is a complex oxide (top) with columns (stacked blue dots corresponding to an added element) where the electrons are free to move in only two dimensions. This is a special type of quantum well called a two-dimensional electron gas (2DEG). (Image: Ho Nyung Lee, Oak Ridge National Laboratory)

Continue reading “Moving beyond semiconductors for next-generation electric switches” »

Jul 26, 2016

Self-assembling nano inks form conductive and transparent grids during imprint

Posted by in categories: innovation, mobile phones

Researchers at INM have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer. Your Contact Press and Public Relations: Dr. Carola Jung carola.jung@leibniz-inm.de Phone: +49681–9300-506 Your expert: Dr. Tobias Kraus Head Structure Formation Deputy Head InnovationCenter INM tobias.kraus@leibniz-inm.de Phone: +49681–9300-389.

Read more

Jul 26, 2016

Welcome to Lab 2.0 Where Computers Replace Experimental Science

Posted by in categories: chemistry, computing, mobile phones, physics, science, solar power, sustainability

We spend our lives surrounded by high-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Continue reading “Welcome to Lab 2.0 Where Computers Replace Experimental Science” »

Jul 24, 2016

Boss threatens to sack staff who buy an iPhone

Posted by in category: mobile phones

When buying an iPhone in China can get you fired. My guess his motto is “Lets Make China Great Again”.


The patriotic boss in Hangzhou has also offered cash rewards of up to 2,500 Yuan for employees to switch to made-in-China phones.

Read more

Jul 20, 2016

Atom-scale storage holds 62TB in a square inch

Posted by in categories: computing, mobile phones, particle physics

Storage tech doesn’t get much better than this. Scientists at TU Delft have developed a technique that uses chlorine atom positions as data bits, letting the team fit 1KB of information into an area just 100 nanometers wide. That may not sound like much, but it amounts to a whopping 62.5TB per square inch — about 500 times denser than the best hard drives. The scientists coded their data by using a scanning tunneling microscope to shuffle the chlorine atoms around a surface of copper atoms, creating data blocks where QR code -style markers indicate both their location and whether or not they’re in good condition.

Not surprisingly, the technology isn’t quite ready for prime time. At the moment, this storage only works in extremely clean conditions, and then only in extreme cold (77 kelvin, or −321F). However, the approach can easily scale to large data sizes, even if the copper is flawed. Researchers suspect that it’s just a matter of time before their storage works in normal conditions. If and when it does, you could see gigantic capacities even in the smallest devices you own — your phone could hold dozens of terabytes in a single chip.

Continue reading “Atom-scale storage holds 62TB in a square inch” »