Menu

Blog

Archive for the ‘mobile phones’ category: Page 104

Aug 23, 2021

Earbuds That Read Your Mind

Posted by in categories: health, mobile phones, neuroscience

Summary: Retrofitting wireless earbuds to detect neural signals and relaying the data back to smartphones via Bluetooth, researchers say the new earEEG system could have multiple applications, including health monitoring.

Source: UC Berkeley.

From keypads to touch screens to voice commands – step by step, the interface between users and their smartphones has become more personalized, more seamless. Now the ultimate personalized interface is approaching: issuing smartphone commands with your brain waves.

Aug 21, 2021

Implantable AI system developed for early detection and treatment of illnesses

Posted by in categories: biotech/medical, mobile phones, robotics/AI

Artificial intelligence (AI) will fundamentally change medicine and healthcare: Diagnostic patient data, e.g. from ECG, EEG or X-ray images, can be analyzed with the help of machine learning, so that diseases can be detected at a very early stage based on subtle changes. However, implanting AI within the human body is still a major technical challenge. TU Dresden scientists at the Chair of Optoelectronics have now succeeded for the first time in developing a bio-compatible implantable AI platform that classifies in real time healthy and pathological patterns in biological signals such as heartbeats. It detects pathological changes even without medical supervision. The research results have now been published in the journal Science Advances.

In this work, the research team led by Prof. Karl Leo, Dr. Hans Kleemann and Matteo Cucchi demonstrates an approach for real-time classification of healthy and diseased bio-signals based on a biocompatible AI chip. They used polymer-based that structurally resemble the human brain and enable the neuromorphic AI principle of reservoir computing. The random arrangement of polymer fibers forms a so-called “recurrent ,” which allows it to process data, analogous to the human brain. The nonlinearity of these networks enables to amplify even the smallest signal changes, which—in the case of the heartbeat, for example—are often difficult for doctors to evaluate. However, the nonlinear transformation using the polymer network makes this possible without any problems.

In trials, the AI was able to differentiate between healthy heartbeats from three common arrhythmias with an 88% accuracy rate. In the process, the polymer network consumed less energy than a pacemaker. The potential applications for implantable AI systems are manifold: For example, they could be used to monitor cardiac arrhythmias or complications after surgery and report them to both doctors and patients via smartphone, allowing for swift medical assistance.

Aug 19, 2021

Samsung Pay can now store your coronavirus vaccine card on your phone

Posted by in categories: biotech/medical, health, mobile phones

Samsung Pay can now store your coronavirus vaccination card on your smartphone in the U.S., thanks to the CommonHealth app on the Play Store.


After Google added support for COVID-19 vaccination cards to Google Pay, Samsung has now announced that it is doing the same with Samsung Pay. Users of the service will be able to load their SMART Health Cards displaying their COVID-19 vaccination status within Samsung Pay. This will allow U.S. consumers to download a verifiable digital version of their vaccination record from pharmacies or health systems and securely store in on their smartphone via the CommonHealth app on supported Samsung Galaxy smartphones.

Aug 19, 2021

Persephone, the robot guide, leads visitors in a Greek cave

Posted by in categories: mobile phones, robotics/AI

Markes listened to the first three stops from the robοt in his native language and the rest in English from a human tour guide.

“I should thank Persephone, our robot, she said very fine things,” said Christos Tenis, a Greek visitor. “I’m impressed by the cave. Of course, we had a flawless (human) guide, she explained many things. I’m very impressed.”

Persephone is not the only technology used inside the cave. There’s a cellphone app in which a visitor, scanning a QR code, can see the Alistrati Beroni. That’s a microorganism that is only found in this cave, in the huge mounds of bat droppings left behind when the cave was opened and the bats migrated elsewhere.

Aug 18, 2021

Apple Has Designed a ‘Folded’ Camera With Optical Image Stabilization

Posted by in categories: electronics, mobile phones

Optical image stabilization combined with a lot more zoom.


Apple has been beaten to the periscope “folded” camera punch by pretty much every other smartphone manufacturer, but it continues to design and patent new takes on the now-commonplace tech. It was granted a patent for a new design that includes folded optics and “lens shifting” capabilities.

Folded optics, or more commonly known as periscope cameras, are a design that allows smartphones to gain considerably more optical zoom than a typical lens design by placing the lens array parallel to the long edge of a smartphone body and bending the transmission of light to the sensor by using one or more prisms. The design has been used by Samsung, Huawei, and others to make smartphone cameras that sport massive optical zooming capabilities compared to what Apple offers.

Continue reading “Apple Has Designed a ‘Folded’ Camera With Optical Image Stabilization” »

Aug 18, 2021

A 5G Shortcut Leaves Most Phones Exposed to Stingrays

Posted by in category: mobile phones

You may not have the full story about what network you’re on—and how well you’re protected.

Aug 11, 2021

Smartphone camera measures blood glucose concentration

Posted by in categories: biotech/medical, mobile phones

Circa 2019


An add-on device for smartphones could replace blood glucose meters for measuring blood sugar. Blood sugar measurements are essential for diabetes patients who need to know their blood glucose concentration in order to regulate it with insulin. Failure to do so might result in complications from the disease. The device, designed by researchers in Taiwan, achieved 100% accuracy in a test with 20 blood samples from diabetes patients (J. Biomed. Opt. 10.1117/1.JBO.24.2.027002).

The researchers designed a compact device containing no electrical components that can be used in combination with a smartphone. The light from the smartphone’s display reflects onto the blood glucose test site (BGTS) inside the device, which contains a colorimetric test strip. The user adds a blood drop to the test strip, which is then assessed for a colour change using the phone’s front camera.

Continue reading “Smartphone camera measures blood glucose concentration” »

Aug 4, 2021

What You Need to Know About Solid-State Batteries

Posted by in categories: computing, engineering, mobile phones, sustainability, transportation

This next jump in battery-tech could solve a lot of EV problems.


The world of the internal combustion engine will sadly, but very necessarily, come to a close at some point in many of our lifetimes. Hybrids and electric vehicles are becoming more affordable and more advanced at a rapid pace, which means batteries are taking the place of fossil fuels. This has led to an equally rapid progression in battery technology, with the main goals of improving capacity, charging times, and safety. One major advancement in this field is the advent of solid-state batteries, which promise to push the boundaries of the limitations that current lithium-ion batteries carry.

Continue reading “What You Need to Know About Solid-State Batteries” »

Aug 3, 2021

A Cousin of Table Salt Could Make Rechargeable Batteries Faster and Safer

Posted by in categories: computing, mobile phones, particle physics, sustainability, transportation

One of the biggest factors affecting consumer adoption of electric vehicles (EVs) is the amount of time required to recharge the vehicles—usually powered by lithium-ion batteries. It can take up to a few hours or overnight to fully recharge EVs, depending on the charging method and amount of charge remaining in the battery. This forces drivers to either limit travel away from their home chargers or to locate and wait at public charging stations during longer trips.

Why does it take so long to fully charge a battery, even those used to power smaller devices, such as mobile phones and laptops? The primary reason is that devices and their chargers are designed so the rechargeable lithium-ion batteries charge only at slower, controlled rates. This is a safety feature to help prevent fires, and even explosions, due to tiny, rigid tree-like structures, called dendrites, that can grow inside a lithium battery during fast charging and induce short-circuits inside the battery.

To address the need for a more practical lithium-ion battery, researchers from the University of California San Diego (UC San Diego) worked with scientists at Oak Ridge National Laboratory (ORNL) to conduct neutron scattering experiments on a new type of material that could be used to make safer, faster-charging batteries. The researchers produced samples of lithium vanadium oxide (Li3V2O5), a “disordered rock salt” similar to table salt but with a certain degree of randomness in the arrangement of its atoms. The samples were placed in a powerful neutron beam that enabled observing the activity of ions inside the material after a voltage was applied.

Aug 2, 2021

Google’s Next Pixel Phone Will Be Powered By a Custom Chip

Posted by in categories: computing, mobile phones

Following the industry trend of tech giants manufacturing their own processors, the company will start putting bespoke silicon in its mobile hardware.