Menu

Blog

Archive for the ‘mathematics’ category: Page 144

Feb 14, 2017

Brand New Maths Could Finally Explain How Disturbances Propagate Through Space-Time

Posted by in categories: cosmology, mathematics, physics

The Universe as we know it is made up of a continuum of space and time — a space-time fabric that’s curved by massive objects such as stars and black holes, and which dictates the movement of matter.

Thanks to Einstein’s gravitational waves, we know disturbances can propagate through both space and time. But what’s less understood is exactly how that happens when properties of the fabric is continuously shifting.

Continue reading “Brand New Maths Could Finally Explain How Disturbances Propagate Through Space-Time” »

Feb 13, 2017

Will androids dream of quantum sheep?

Posted by in categories: mathematics, quantum physics, robotics/AI

Quantum replicants of responsive systems can be more efficient than classical models, say researchers from the Centre for Quantum Technologies in Singapore, because classical models have to store more past information than is necessary to simulate the future. They have published their findings in npj Quantum Information.

The word ‘replicant’ evokes thoughts of a sci-fi world where society has replaced common creatures with artificial machines that replicate their behaviour. Now researchers from Singapore have shown that if such machines are ever created, they’ll run more efficiently if they harness theory to respond to the environment.

This follows the findings of a team from the Centre for Quantum Technologies (CQT), published 10 February in npj Quantum Information. The team investigated ‘input-output processes’, assessing the mathematical framework used to describe arbitrary devices that make future decisions based on stimuli received from the environment. In almost all cases, they found, a quantum device is more efficient because classical devices have to store more past information than is necessary to simulate the future.

Read more

Feb 12, 2017

Scientists Use Nanotechnology to Create a Super-Fast ‘Biological Computer’

Posted by in categories: biological, mathematics, nanotechnology, supercomputing

In Brief:

Researchers found a new “supercomputer” using nanotechnology. These biocomputers can solve mathematical problems faster, and they are more energy efficient.

Continue reading “Scientists Use Nanotechnology to Create a Super-Fast ‘Biological Computer’” »

Feb 6, 2017

Tesla and Scalar Energy Explained

Posted by in categories: energy, mathematics, quantum physics

Nice write up and anyone working or researching central nervous system should not find this research and findings shocking.


Re: Scam hunter’s question; “Can you explain what a scalar torsion field model is?”

The History of Scalar Energy

Continue reading “Tesla and Scalar Energy Explained” »

Feb 6, 2017

Quantum cognition

Posted by in categories: mathematics, neuroscience, quantum physics

Quantum Cognition — recently published as a new field term for cognitive thinking.


Quantum cognition is an emerging field which applies the mathematical formalism of quantum theory to model cognitive phenomena such as information processing by the human brain, language, decision making, human memory, concepts and conceptual reasoning, human judgment, and perception. [1][2][3][4] The field clearly distinguishes itself from the quantum mind as it is not reliant on the hypothesis that there is something micro-physical quantum mechanical about the brain. Quantum cognition is based on the quantum-like paradigm[5][6] or generalized quantum paradigm [7] or quantum structure paradigm [8] that information processing by complex systems such as the brain, taking into account contextual dependence of information and probabilistic reasoning, can be mathematically described in the framework of quantum information and quantum probability theory.

Quantum cognition uses the mathematical formalism of quantum theory to inspire and formalize models of cognition that aim to be an advance over models based on traditional classical probability theory. The field focuses on modeling phenomena in cognitive science that have resisted traditional techniques or where traditional models seem to have reached a barrier (e.g., human memory [9]), and modeling preferences in decision theory that seem paradoxical from a traditional rational point of view (e.g., preference reversals [10]). Since the use of a quantum-theoretic framework is for modeling purposes, the identification of quantum structures in cognitive phenomena does not presuppose the existence of microscopic quantum processes in the human brain.

Read more

Feb 2, 2017

What Quantum Gravity Needs Is More Experiments

Posted by in categories: mathematics, particle physics, quantum physics

Agree; math is a must. However, experimentation is when the rubber meets the road.


In the mid-1990s, I studied mathematics. I wasn’t really sure just what I wanted to do with my life, but I was awed by the power of mathematics to describe the natural world. After classes on differential geometry and Lie algebras, I attended a seminar series offered by the math department about the greatest problem in fundamental physics: how to quantize gravity and thereby bring all the forces of nature under one theoretical umbrella. The seminars focused on a new approach pioneered by Abhay Ashtekhar at Penn State University. It wasn’t research I had previously encountered, and I came away with the impression that the problem had been solved; the news just hadn’t yet spread.

It seemed a clear victory for pure thought. The requirement of mathematical consistency also led, for example, to the discovery of the Higgs boson. Without the Higgs, the Standard Model of particle physics would stop working for particles that are collided at energies above 1 teraelectron-volts, well within the range of the Large Hadron Collider. Probabilities would no longer add to 100 percent and would cease to make mathematical sense. Something new thus had to turn up once that energy was crossed. The Higgs was the simplest possibility that physicists could think of—and, sure enough, they found it.

Continue reading “What Quantum Gravity Needs Is More Experiments” »

Jan 30, 2017

Physicists ‘have substantial evidence’ our universe is a HOLOGRAM

Posted by in categories: holograms, mathematics, physics

The researchers from the University of Southampton, working with colleagues in Canada and Italy, claim there is as much evidence for this theory as for traditional explanations for these irregularities.

A holographic universe, an idea first suggested in the 1990s, is one where all the information, which makes up our 3D ‘reality’is contained in a 2D surface on its boundaries.

Continue reading “Physicists ‘have substantial evidence’ our universe is a HOLOGRAM” »

Jan 26, 2017

The Futurist Sessions: Simulation Theory — ft. Keith Comito, Gray Scott, Luis Arana, and Zac Waldman

Posted by in categories: mathematics, quantum physics

A discussion about Simulation theory, quantum mechanics and Super Mario!


Futurists Keith Comito, Gray Scott, Luis Arana, and Zach Waldman talk about the simulation theory as part of the #FuturistSessions at the Soho House New York. Discussions include quantum mechanics, mathematical realism vs mathematical fictionalism, the Matrix, Pacman, and Mario!

Continue reading “The Futurist Sessions: Simulation Theory — ft. Keith Comito, Gray Scott, Luis Arana, and Zac Waldman” »

Jan 25, 2017

A Quick Rundown of the Alcubierre “Warp Drive”

Posted by in categories: information science, mathematics, physics, robotics/AI, space travel

In Brief Science fiction often serves as a curiosity catalyst for a lot of technological innovation. One such example is this Alcubierre Warp Drive, that would absolutely revolutionize the capability of humans to traverse the stars.

It’s always a welcome thing to learn that ideas that are commonplace in science fiction have a basis in science fact. Cryogenic freezers, laser guns, robots, silicate implants… and let’s not forget the warp drive! Believe it or not, this concept – alternately known as FTL (Faster-Than-Light) travel, Hyperspace, Lightspeed, etc. – actually has one foot in the world of real science.

Continue reading “A Quick Rundown of the Alcubierre ‘Warp Drive’” »

Jan 20, 2017

A New Device Could Make Memory Implants a Reality

Posted by in categories: biological, health, mathematics, neuroscience

In Brief

  • By mimicking the way neurons fire in the hippocampus during natural memory creation, a brain implant was used to successfully plant memories in the brains of rats.
  • Though human implementation is far off, this breakthrough in cracking the hippocampus’ mathematical “memory code” has very important implications for health and research.

Memories are the faintest, most ethereal wisps of our neurophysiology — somehow, the firing of delicate synapses and the activation of neurons combine to produce the things we remember. The sum of our memories make us who we are; they are us, in every way, and without them we cease to be.

Continue reading “A New Device Could Make Memory Implants a Reality” »