Menu

Blog

Archive for the ‘mathematics’ category: Page 114

Aug 19, 2020

Mathematicians Solve Part of the Weirdest Open Problem Ever

Posted by in category: mathematics

Two mathematicians say they’ve untangled the first part of Paul Erdos’s famously thorny and unproven conjecture. In a new paper they’ve uploaded to arXiv and submitted to journals, mathematicians Thomas Bloom and Olof Sisask say they’ve jumped the first hurdle in the Erdos conjecture. If this is true, the next generation of researchers could start from that point with the first part finished and in hand.

➗ You love numbers. So do we. Let’s nerd out over numbers together.

Aug 19, 2020

From sociology of quantification to ethics of quantification

Posted by in categories: ethics, information science, mathematics

Quantifications are produced by several disciplinary houses in a myriad of different styles. The concerns about unethical use of algorithms, unintended consequences of metrics, as well as the warning about statistical and mathematical malpractices are all part of a general malaise, symptoms of our tight addiction to quantification. What problems are shared by all these instances of quantification? After reviewing existing concerns about different domains, the present perspective article illustrates the need and the urgency for an encompassing ethics of quantification. The difficulties to discipline the existing regime of numerification are addressed; obstacles and lock-ins are identified. Finally, indications for policies for different actors are suggested.

Aug 17, 2020

Gearing for the 20/20 Vision of Our Cybernetic Future — The Syntellect Hypothesis, Expanded Edition | Press Release

Posted by in categories: computing, cosmology, engineering, information science, mathematics, nanotechnology, neuroscience, quantum physics, singularity

“A neuron in the human brain can never equate the human mind, but this analogy doesn’t hold true for a digital mind, by virtue of its mathematical structure, it may – through evolutionary progression and provided there are no insurmountable evolvability constraints – transcend to the higher-order Syntellect. A mind is a web of patterns fully integrated as a coherent intelligent system; it is a self-generating, self-reflective, self-governing network of sentient components… that evolves, as a rule, by propagating through dimensionality and ascension to ever-higher hierarchical levels of emergent complexity. In this book, the Syntellect emergence is hypothesized to be the next meta-system transition, developmental stage for the human mind – becoming one global mind – that would constitute the quintessence of the looming Cybernetic Singularity.” –Alex M. Vikoulov, The Syntellect Hypothesis https://www.ecstadelic.net/e_news/gearing-for-the-2020-visio…ss-release

#SyntellectHypothesis

Continue reading “Gearing for the 20/20 Vision of Our Cybernetic Future — The Syntellect Hypothesis, Expanded Edition | Press Release” »

Aug 11, 2020

Time-reversal of an unknown quantum state

Posted by in categories: computing, engineering, information science, mathematics, quantum physics

Physicists have long sought to understand the irreversibility of the surrounding world and have credited its emergence to the time-symmetric, fundamental laws of physics. According to quantum mechanics, the final irreversibility of conceptual time reversal requires extremely intricate and implausible scenarios that are unlikely to spontaneously occur in nature. Physicists had previously shown that while time-reversibility is exponentially improbable in a natural environment—it is possible to design an algorithm to artificially reverse a time arrow to a known or given state within an IBM quantum computer. However, this version of the reversed arrow-of-time only embraced a known quantum state and is therefore compared to the quantum version of pressing rewind on a video to “reverse the flow of time.”

In a new report now published in Communications Physics, Physicists A.V. Lebedev and V.M. Vinokur and colleagues in materials, physics and advanced engineering in the U.S. and Russia, built on their previous work to develop a technical method to reverse the temporal evolution of an arbitrary unknown . The technical work will open new routes for general universal algorithms to send the temporal evolution of an arbitrary system backward in time. This work only outlined the mathematical process of time reversal without experimental implementations.

Aug 5, 2020

The mathematician who helped to reshape physics

Posted by in categories: mathematics, physics

Barry Simon linked a phenomenon that had shocked physicists to topology, the branch of mathematics that studies shapes.

Aug 4, 2020

Casimir force used to control and manipulate objects

Posted by in categories: computing, mathematics, quantum physics

A collaboration between researchers from the University of Western Australia and the University of California Merced has provided a new way to measure tiny forces and use them to control objects.

The research, published today in Nature Physics, was jointly led by Professor Michael Tobar, from UWA’s School of Physics, Mathematics and Computing and Chief Investigator at the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dr. Jacob Pate from the University of Merced.

Professor Tobar said that the result is a new way to manipulate and control in a non-contacting way, allowing enhanced sensitivity without adding loss.

Aug 1, 2020

Did Scientists Actually Spot Evidence Of Another Universe?

Posted by in categories: cosmology, mathematics, physics

In a study published earlier this month, a team of theoretical physicists is claiming to have discovered the remnants of previous universes hidden within the leftover radiation from the Big Bang. Our universe is a vast collection of observable matter, like gas, dust, stars, etc., in addition to the ever-elusive dark matter and dark energy. In some sense, this universe is all we know, and even then, we can only directly study about 5% of it, leaving 95% a mystery that scientists are actively working to solve. However, this group of physicists is arguing that our universe isn’t alone; it’s just one in a long line of universes that are born, grow, and die. Among these scientists is mathematical physicist Roger Penrose, who worked closely with Stephen Hawking and currently is the Emeritus Rouse Ball Professor of Mathematics at Oxford University. Penrose and his collaborators follow a cosmological theory called conformal cyclic cosmology (CCC) in which universes, much like human beings, come into existence, expand, and then perish.

Jul 30, 2020

The Two Forms of Mathematical Beauty

Posted by in categories: mathematics, space

Mathematicians typically appreciate either generic or exceptional beauty in their work, but one type is more useful in describing the universe.

Jul 30, 2020

How Physics Found a Geometric Structure for Math to Play With

Posted by in categories: mathematics, physics

Symplectic geometry is a relatively new field with implications for much of modern mathematics. Here’s what it’s all about.

Jul 29, 2020

The quantum Hall effect continues to reveal its secrets to mathematicians and physicists

Posted by in categories: mathematics, quantum physics

A transformative experiment is yielding fresh insights 40 years after the effect’s discovery — and energizing transdisciplinary collaborations.