Menu

Blog

Archive for the ‘materials’ category: Page 72

Jul 21, 2022

Mushrooms could solve a huge problem in outer space

Posted by in categories: materials, satellites

Circa 2021


Mycelium is very light in weight, it naturally floats on water, it can withstand the cold of space where we don’t have to worry about cold welding, and we can add in fine strains of metal material which is used to transmit almost any type of signal. As you can see, there are numerous reasons why mycelium is quite suitable for our satellites in space, on land, and in the air on its way to space.

Continue reading “Mushrooms could solve a huge problem in outer space” »

Jul 21, 2022

First steps towards high-speed motors for fuel cell components

Posted by in categories: climatology, materials

The transport sector is transforming towards climate-friendly powertrains with significantly reduced CO2 emissions. The electrification of powertrains remains a major challenge not only for trucks, buses, trains, and ships but also for aircraft. These applications cannot be realized in the future with batteries because of the energy requirements. The fuel cell is an extremely promising energy supplier for these applications, which supplies electrical energy from stored hydrogen and ambient air.

Fraunhofer Institutes LBF, IFAM, IISB, and SCAI joined their forces to develop advanced and highly efficient components for fuel cells. The project HABICHT aims to design and develop a high-speed motor for a fuel cell compressor to enable innovation in the utility vehicle and aviation domain. The electric machine should at least achieve apower density of 30 kW/kgby using innovative materials for direct cooling of the stator and maximizing the rotor’shigh-speed capability (150.000 rpm). The rotor design will use a new manufacturing process to glue and pot the magnets to be suitable for high circumferential speeds.

Prototype of a high-speed motor for a fuel cell compressor. (Image: Project HABICHT)

Jul 20, 2022

‘Canyon of fire’ solar storm to hit Earth today or tomorrow

Posted by in category: materials

The solar material was launched from a snapping solar filament.

Jul 20, 2022

New semiconductor laser delivers high power at a single frequency

Posted by in categories: energy, materials

Physics World


To get around this problem, Kanté and colleagues utilized photonic crystals. These are periodic structures, which, like electronic semiconductors, have “band gaps” – frequencies at which they are opaque. Like graphene in electronics, photonic crystals generally contain Dirac cones in their band structures. At the vertex of such a cone is the Dirac point, where the band gap closes.

Jul 19, 2022

Researcher uses graphene for same-time, same-position biomolecule isolation and sensing

Posted by in categories: materials, particle physics

New research led by University of Massachusetts Amherst assistant professor Jinglei Ping has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work, recently published in ACS Nano, demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis, and could allow lab-on-a-chip devices to become smaller and achieve results faster.

The process of detecting biomolecules has been complicated and time-consuming. “We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” says Ping, who is in the College of Engineering’s Mechanical and Industrial Engineering Department and is also affiliated with the university’s Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time—no one has ever demonstrated this before.”

His lab achieved this advance by using graphene, a one-atom-thick honeycomb lattice of carbon atoms, as microelectrodes in a .

Jul 18, 2022

Researchers Use Lasers to Transform Neutrophils into Medicinal Microrobots

Posted by in categories: biotech/medical, materials

Medical microrobots could aid doctors in providing better illness prevention and treatment. However, the majority of these gadgets are created from synthetic materials that incite in vivo immunological reactions.

Scientists have now successfully utilized lasers to precisely manipulate neutrophils, a type of white blood cell, in living fish as a natural, biocompatible microrobot for the first time, as reported in ACS Central Science.

Microrobots that are now being developed for medical use need to be injected into an animal or ingested as capsules. However, scientists have discovered that these tiny items frequently cause immunological reactions in small animals, which prevents the elimination of microrobots from the body before they can carry out their functions.

Jul 17, 2022

The sustainable cities made from mud

Posted by in categories: materials, sustainability

Earthen architecture can withstand extreme events such as earthquakes and heavy winds “because of the ability of its structure to distribute the load that it faces on its surface, unlike concrete or cement,” says Damluji.

But mud building’s resilience to earthquakes depends on the intensity of the seismic waves and the soil in which they are built, says Jerome.

Mud buildings are “also protected from seasonal rains and flash floods due to the damp-proof and protective external rendering used in several layers of refined mud, ash and lime coating and plaster”, says Damluji.

Jul 17, 2022

Where do batteries come from? And where do they go?

Posted by in categories: materials, sustainability

Way too many batteries still end up in a landfill, though it depends on the type. While 90% of lead acid batteries are recycled, experts estimate that only about 5% of lithium-ion batteries currently enter a recycling stream. Many more lurk in drawers or end up in the trash. That’s a problem.

Why you shouldn’t throw batteries in the trash

Lithium-ion batteries can cause fires when exposed to heat, mechanical stress, or other waste materials. Once exposed, the elements contained in the batteries could leach into the environment and contaminate the soil and groundwater. While this shouldn’t present an issue at a well-managed domestic facility, exported trash might end up at a more lenient landfill. Richa et al. note that “the greater risk is loss of valuable materials.”

Jul 17, 2022

Mysteries of the Oort cloud at the edge of our solar system

Posted by in categories: materials, space

The entirely theoretical cloud of icy space debris marks the frontiers of our solar system.


The Oort cloud represents the very edges of our solar system. The thinly dispersed collection of icy material starts roughly 200 times farther away from the sun than Pluto and stretches halfway to our sun’s nearest starry neighbor, Alpha Centauri. We know so little about it that its very existence is theoretical — the material that makes up this cloud has never been glimpsed by even our most powerful telescopes, except when some of it breaks free.

“For the foreseeable future, the bodies in the Oort cloud are too far away to be directly imaged,” says a spokesperson from NASA. “They are small, faint, and moving slowly.”

Continue reading “Mysteries of the Oort cloud at the edge of our solar system” »

Jul 16, 2022

Smart textiles detect, sense posture and motion

Posted by in categories: materials, robotics/AI

Researchers at the Massachusetts Institute of Technology (MIT) Media Lab have created a novel fabrication process to produce smart textiles that comfortabl | Technology.


Using 3DKnITS, the research team created a “smart” shoe and mat, followed by building a hardware and software system capable of measuring and interpreting real-time data from the pressure sensors. An individual then performed yoga poses on the smart textile mat while the machine-learning system was able to accurately predict the individual’s motions and poses 99 percent of the time.

Continue reading “Smart textiles detect, sense posture and motion” »

Page 72 of 241First6970717273747576Last