Menu

Blog

Archive for the ‘genetics’ category: Page 85

Oct 2, 2023

New center provides resources to develop and test new genome editing technologies

Posted by in categories: biotech/medical, genetics, health

Researchers at Baylor College of Medicine and Rice University received a grant for more than $3.9 million over five years from the National Institutes of Health’s Office of Research Infrastructure Programs to establish the Baylor/Rice Genome Editing Testing Center (GETC). The new center will assist investigators from across the country with somatic cell genome editing experiments in mouse models.

Somatic cell genome editing, the ability to edit DNA within the body’s non-reproductive cells, is a promising potential treatment for the most severe human diseases. Over the last decade, significant effort has gone into developing more effective genome editing systems and methods of delivery to specific cells and organs. However, many of these new technologies do not progress to use in humans because there is insufficient evidence from animal models supporting their effectiveness.

“Our center will provide mouse model resources and genome editing testing pipelines to researchers who are developing new genome editing and delivery technologies but need assistance with conducting preclinical animal studies,” said Dr. Jason Heaney, co-principal investigator and associate professor of molecular and human genetics at Baylor. “Our goal is to help generate the animal model data needed to demonstrate the therapeutic potential of these cutting-edge technologies.”

Oct 1, 2023

Optogenetics, Neuro-Engineering, and Artificial Memories in the Postmodern Age

Posted by in categories: bitcoin, cryptocurrencies, engineering, genetics

https://www.youtube.com/watch?v=Mq2_weVH60w

TWITTER
https://twitter.com/Transhumanian.

PATREON https://www.patreon.com/transhumania.

Continue reading “Optogenetics, Neuro-Engineering, and Artificial Memories in the Postmodern Age” »

Oct 1, 2023

Longevity Summit Dublin

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

The last 2 questions and the answers are great. The first starts at 30 minutes. And I like his answer to the 2nd question especially, the time is 33:54. “What is giving me great hope is that we’re entering the phases where we have more than enough tools to get really get close to escape velocity.”


Genome Engineering for Healthy Longevity – George Church at Longevity Summit Dublin 2023.

Continue reading “Longevity Summit Dublin” »

Oct 1, 2023

Researchers take steps toward stopping the ‘conversation’ between cancerous tumors and nerves

Posted by in categories: biotech/medical, genetics

Cancer tumors hijack the genetic program used by developing nerves. This is shown in a study published in the journal Frontiers in Genetics by researchers at Umeå University. In the long term, the results may open up new ways of treating cancer by limiting the tumor’s interaction with the nerves.

“We are still only early in the research, but this opens up exciting opportunities to fight cancer in the body in a completely new way,” says Sara Wilson, associate professor of neurobiology at the Department of Integrative Medical Biology at Umeå University.

In cancer, there is an interaction between tumors and nerves. You could say that the tumor talks to the . The researchers believe that by interpreting this “conversation,” it will later be possible to find ways to break it and thus slow down the cancer or reduce the risk of it spreading.

Sep 30, 2023

The blackcap (Sylvia atricapilla) genome reveals a recent accumulation of LTR retrotransposons

Posted by in categories: biotech/medical, evolution, genetics

The effect of a TE on its host can be classified analogous to the effect of point mutations. In the majority of cases, the consequences of a TE their activity (transposition to a new genomic site) is either neutral or deleterious. The latter occurs, when TEs disrupt genes and their functions, or when, they trigger de-novo genomic instability by transposition or TE-mediated chromosomal rearrangements, which can lead to disease1, 3. TEs can occasionally have a positive impact on the host genome, for example, by impacting gene regulatory networks. In the British peppered moth (Biston betularia), a TE inserted within the first intron of the cortex gene, resulted in increased transcription levels, subsequently affecting cell cycle regulation during wing-disc development through the amount of cortex protein product, resulting in the iconic melanic form4. However, more research is needed to understand these different evolutionary impacts that TEs can have when interacting with their host genome.

The increased accessibility to high throughput sequencing technologies has greatly increased our ability to analyse genetic differences caused by changes at the nucleotide level, and patterns of natural selection on coding sequences, and simultaneously allowed us to disentangle phenotypic differences at the nucleotide level. Mounting evidence has started to shed light on non-coding regions having important effects on genomic variation3. While TEs can be found in the genomes of virtually all organisms, large proportions of TEs are often absent from reference genomes, as their repetitive nature impedes their assembly and can result in collapsed regions within the reference genome2, 5. These difficulties have led to an increased demand for reference genomes that are of a higher quality and are more complete. More importantly, a new demand for high-quality annotations of non-coding regions in reference genomes has surfaced. Annotations of non-coding regions are imperative to study the evolution of these regions between and within species. Improvements in sequencing techniques, especially the addition of long-read sequencing, and improved bioinformatic analytical tools are resulting in the assembly of increasingly gapless reference genomes, enabling the curation of high-quality TE annotations.

The current efforts of large consortia, such as the VGP6 and the B10K7 to create high-quality references for a wide variety of organisms provide invaluable data to improve our endeavours for a better understanding of TEs. With these new resources we can take our research into TEs and their effects on host genomes further, for example, to better understand the evolution of complex traits across phylogenomic scales. One such a complex trait is seasonal bird migration and recent research across a migratory divide in willow warblers identified a diagnostic TE correlated with migratory direction8. Here we focus on the Eurasian blackcap (Sylvia atricapilla), another iconic model species for bird migration, and consequently, the resource published here may be able to add insight to the quest to resolve the genetic background of migratory behaviour.

Sep 30, 2023

Newly engineered CRISPR enzyme for editing DNA could improve patient treatment

Posted by in categories: bioengineering, biotech/medical, food, genetics

A new CRISPR-based gene-editing tool has been developed which could lead to better treatments for patients with genetic disorders. The tool is an enzyme, AsCas12f, which has been modified to offer the same effectiveness but at one-third the size of the Cas9 enzyme commonly used for gene editing. The compact size means that more of it can be packed into carrier viruses and delivered into living cells, making it more efficient.

Researchers created a library of possible AsCas12f mutations and then combined selected ones to engineer an AsCas12f with 10 times more editing ability than the original unmutated type. This engineered AsCas12f has already been successfully tested in mice and has the potential to be used for new, more effective treatments for patients in the future.

By now you have probably heard of CRISPR, the gene-editing tool which enables researchers to replace and alter segments of DNA. Like genetic tailors, scientists have been experimenting with “snipping away” the genes that make mosquitoes malaria carriers, altering food crops to be more nutritious and delicious, and in recent years begun to overcome some of the most challenging diseases and genetic disorders.

Sep 30, 2023

Longevity: can ageing be reversed?

Posted by in categories: biotech/medical, genetics, life extension

Ageing has always been inevitable but fasting, epigenetic reprogramming and parabiosis are just some of the scientific techniques that seem to help people stay young. Might the Peter Pan dream become real?

00:00 — Can science turn back the clock?
01:01 — Centenarians.
02:51 — What is ageing?
04:51 — Dietary restriction.
06:00 — Roundworms.
07:55 — Epigenetics.
09:43 — Blood and guts.
11:40 — Senolytics.
12:38 — Metformin.
13:51 — Anti-ageing treatments are coming.

Continue reading “Longevity: can ageing be reversed?” »

Sep 30, 2023

Small Strands of Genetic Code Can Enhance Immunotherapy

Posted by in categories: biotech/medical, chemistry, evolution, genetics

Ribonucleic acid (RNA) is a molecule which is present in cells and made of genetic material to help build proteins necessary for cell function. RNA provides a template for the construction of proteins and is essential for cell and organism life. Immune cells rely on these proteins, including CD8+ or cytotoxic T cells which are responsible for killing invading pathogens. Importantly, cytotoxic T cells are a major component of the memory immune response. A pool of T cells specifically designed to recognize an invader is stored for future invasion of that particular pathogen. For example, once these cells are exposed to an invading antigen or protein, the immune system will expand T cells specific to that antigen and remember the antigen next time it enters the body. Vaccines work in a similar way by introducing a foreign antigen to the body, so the immune system is ready if the pathogen ever enters your body in the future. Only a small set of T cells that expand survive and it is unclear how this process occurs.

Recently a team of researchers at the University of Massachusetts Amherst (UMass) demonstrated that a single strand of RNA governs a T cells ability to recognize and kill tumors. The single strand of RNA is known as let-7 and is a microRNA, which is responsible for gene expression regulation. The recent discovery may improve vaccine development and cellular memory to enhance immunotherapy against cancers. Immunotherapy is a general term referring to cancer therapies that try to activate the immune system to kill the tumor compared to other drugs that try to directly kill the tumor with chemicals, such as chemotherapy.

The report published in Nature Communications identified that the microRNA, let-7, may enhance memory of T cells. Researchers led by Dr. Leonid Pobezinsky, Associate Professor of Veterinary and Animal Sciences at UMass, further built on our understanding of how T cells form immune memory. Pobezinsky and colleagues found that a small piece of microRNA that has been present throughout evolution is expressed in memory cells. Additionally, they found that more let-7 a cell has, the more likely that cell will recognize a cancer cell and kill it. The increased let-7 also indicates that the cell will turn into a memory cell after being exposed to an antigen. The regulation of enhanced memory T cells by let-7 is an integral process key to fight infections. This is a critical finding, especially because memory cells retain stem-like characteristics and can survive for decades.

Sep 30, 2023

Beyond Sight: Unraveling the Mysteries of Brain Wiring

Posted by in categories: genetics, neuroscience

Summary: Scientists made a novel discovery using zebrafish with a genetic mutation. These ‘deep-blind’ fish lack connections between the retina and brain yet retain functional brain circuits.

Remarkably, despite their inability to see, direct brain stimulation through optogenetics triggers normal visual behavior. This suggests that much of the zebrafish brain’s wiring is innate and doesn’t rely heavily on visual experience.

Sep 30, 2023

New method tracks how brain cells age

Posted by in categories: biotech/medical, genetics, life extension, neuroscience, sex

Hospital nurseries routinely place soft bands around the tiny wrists of newborns that hold important identifying information such as name, sex, mother, and birth date. Researchers at Rockefeller University are taking the same approach with newborn brain cells—but these neonates will keep their ID tags for life, so that scientists can track how they grow and mature, as a means for better understanding the brain’s aging process.

As described in a new paper in Cell, the new method developed by Rockefeller geneticist Junyue Cao and his colleagues is called TrackerSci (pronounced “sky”). This low-cost, high-throughput approach has already revealed that while newborn cells continue to be produced through life, the kinds of cells being produced greatly vary in different ages. This groundbreaking work, led by co-first authors Ziyu Lu and Melissa Zhang from Cao’s lab, promises to influence not only the study of the brain but also broader aspects of aging and disease across the human body.

“The cell is the basic functional unit of our body, so changes to the cell essentially underlie virtually every disease and the aging process,” says Cao, head of the Laboratory of Single-Cell Genomics and Population Dynamics. “If we can systematically characterize the different cells and their dynamics using this novel technique, we may get a panoramic view of the mechanisms of many diseases and the enigma of aging.”

Page 85 of 508First8283848586878889Last