Menu

Blog

Archive for the ‘genetics’ category: Page 134

Mar 13, 2023

Scientists create mice with two fathers after making eggs from male cells

Posted by in categories: bioengineering, biotech/medical, food, genetics

https://www.youtube.com/watch?v=2JsgnlBffCA

https://gotopnews.com/post/1979903

Scientists created mice with two biological dads by producing eggs from male cells, which is a development that opens radical new possibilities for reproduction. Progress can ultimately pave way for treatments for severe infertility forms and increase possibility of attracting couples of same gender to have a biological child in future. Hayashi, who presented development at the third International Human Genome Regulation Summit at Francis Crick Institute in London on Wednesday, predicts it would be technically possible to create a human egg from a male skin cell in ten years. Considering that human eggs did not create eggs, he argued this timeline was optimistic. Previously, scientists have created mice technically with a detailed step chain, including genetic engineering. This is first time that can be applied first time, eggs were raised from male cells and pointing to an important progress. He was trying to reproduce with human cells, but there would be important obstacles for use of eggs grown in laboratory clinical purposes, including creating safety. “In terms of technology, it will be possible even in 10 years in 10 years, ve he personally added that the technology used clinically to allow two men to have a baby. Orum I don’t know if they are ready reproduction,” he said.“This is a question not only for the scientific program, but also[society].” Technique, X chromosome is missing or partially missing a copy of the turner syndrome, including women with severe infertility forms can be applied to treat and Hayashi, this application is the primary motivation for research, he said. Others argued that translating technique into human cells may be challenging. Human cells need much longer agricultural periods to produce a mature egg, which can increase the risk of undesirable genetic changes. Profess George Daley, the Dean of Harvard Medical Faculty, described the study as “fascinating„ but other researches also showed that creating gamet creating from human cells in laboratory is more difficult than mouse cells.said. The study, which was sent to be leading magazine, was based on a number of complex steps to transform skin cell that carries the combination of male XY chromosomes into an egg. Men’s skin cells were re-programmed into a stem cell-like condition to form the induced pluripotent root cells. Then the Y chromosome of these cells was deleted and changed and ” borrowed from another cell to produce IPS cells with two identical X chromosome. Hayashi said, ” The trick, greatest trick, the reproduction of X chromosome,” he said. ” We really tried to establish a system to replicate the X chromosome.” Finally, cells were grown in an ovary organoid with a cultural system designed to replicate the conditions within ovary. When Yumurtas were fertilized with normal sperm, scientists obtained approximately 600 embryos implanted in the mice, which resulted in birth of seven mouse offspring. ‘Efficiency was lower than the efficiency obtained by normal female-derived eggs, where approximately 5% of the embryos continued to produce a lively birth. Baby mice looked healthy, had a normal life, and as an adult continued to the offspring. ” They look good, they grow normal, they become a father, Hay Hayashi said. He and his colleagues are now trying to increase the creation of eggs grown in the laboratory using human cells. Working on Gamets grown in the laboratory at the University of California Los Angeles, Prof Amander Clark said that it would be a ” big jump in, because scientists have not yet created human eggs from women’s cells. Scientists have created the premises of human eggs, but so far, cells, mature eggs and sperm, a critical cell division step, which has stopped development before the point of meiosis. It can be 10 years or 20 years.”

Mar 13, 2023

Ray Kurzweil says We’ll Reach IMMORTALITY by 2030 | The Singularity IS NEAR

Posted by in categories: biotech/medical, genetics, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity

Ray Kurzweil — The Singularity IS NEAR — part 2! We’ll Reach IMMORTALITY by 2030
Get ready for an exciting journey into the future with Ray Kurzweil’s The Singularity IS NEAR — Part 2! Join us as we explore the awe-inspiring possibilities of what could be achieved before 2030, including the potential for humans to reach immortality. We’ll dive into the incredible technology that could help us reach this singularity and uncover what the implications of achieving immortality could be. Don’t miss out on this fascinating insight into the future of mankind!
In his book “The Singularity Is Near”, futurist and inventor Ray Kurzweil argues that we are rapidly approaching a point in time known as the singularity. This refers to the moment when artificial intelligence and other technologies will become so advanced that they surpass human intelligence and change the course of human evolution forever.

Kurzweil predicts that by 2030, we will reach a crucial milestone in our technological progress: immortality. He bases this prediction on his observation of exponential growth in various fields such as genetics, nanotechnology, and robotics, which he believes will culminate in the creation of what he calls “nanobots”.

Continue reading “Ray Kurzweil says We’ll Reach IMMORTALITY by 2030 | The Singularity IS NEAR” »

Mar 10, 2023

Yamanaka Factors — The Key to Life Extension?

Posted by in categories: biotech/medical, genetics, life extension

A quick introduction to Yamanaka factors!


The quest for longevity has always been with us. Ever since the ancient kings of old we have been trying everything we can think of in order to stave off death and disease, with most of our efforts unfortunately baring little fruit. However, as it turns out, the power to reverse the aging process has been nestled within us this whole time. Not in the metaphorical sense, but rather in the quite literal sense. For you see, we have been reversing the aging process every single time we have reproduced.

Have you ever wondered how it is that regardless of how old the parents of a child are, the child is never born ‘pre-aged?’. This seems like a ridiculous question, but if the genetic material that came from the parents (especially from the father) has already undergone the aging process, then how is it that ‘genetic aging’ is not passed onto the child? If such a process were to occur, then it would obviously spell doom for our entire species, as we would eventually accumulate age with each subsequent generation and we would very quickly perish. Yet, this obviously does not happen. So the question was asked, why is this?

Mar 9, 2023

Computer modelling for molecular science — with Sir Richard Catlow

Posted by in categories: bioengineering, computing, genetics, information science, nanotechnology, science, space

High-performance, realistic computer simulations are crucially important for science and engineering, even allowing scientists to predict how individual molecules will behave.

Watch the Q&A here: https://youtu.be/aRGH5lC0pLc.
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

Continue reading “Computer modelling for molecular science — with Sir Richard Catlow” »

Mar 9, 2023

3D-snapshots of nanoparticles

Posted by in categories: biotech/medical, genetics, nanotechnology

X-ray diffraction has been used for more than a hundred years to understand the structure of crystals or proteins—for instance, in 1952 the well-known double helix structure of the DNA that carries genetic information was discovered in this way. In this technique, the object under investigation is bombarded with short-wavelength X-ray beams. The diffracted beams then interfere and thus create characteristic diffraction patterns from which one can gain information about the shape of the object.

For several years now it has been possible to study even single nanoparticles in this way, using very short and extremely intense X-ray pulses. However, this typically only yields a two-dimensional image of the particle. A team of researchers led by ETH professor Daniela Rupp, together with colleagues at the universities of Rostock and Freiburg, the TU Berlin and DESY in Hamburg, have now found a way to also calculate the three-dimensional structure from a single , so that one can “look” at the particle from all directions. In the future it should even be possible to make 3D-movies of the dynamics of nanostructures in this way. The results of this research have recently been published in the scientific journal Science Advances.

Daniela Rupp has been assistant professor at ETH Zurich since 2019, where she leads the research group “Nanostructures and ultra-fast X-ray science.” Together with her team she tries to better understand the interaction between very intense X-ray pulses and matter. As a model system they use nanoparticles, which they also investigate at the Paul Scherrer Institute. “For the future there are great opportunities at the new Maloja instrument, on which we were the first user group to make measurements at the beginning of last year. Right now our team there is activating the attosecond mode, with which we can even observe the dynamics of electrons,” says Rupp.

Mar 9, 2023

Mice have been born from eggs derived from male cells

Posted by in categories: genetics, sex

A method for turning male cells into egg cells in mice could one day be used to help men in a same-sex couple have children who are genetically related to them both.

By Michael Le Page

Mar 8, 2023

When will a computer surpass the human brain?

Posted by in categories: cyborgs, education, genetics, nanotechnology, robotics/AI, transhumanism

This is a clip from Technocalyps, a documentary in three parts about the exponential growth of technology and trans-humanism, made by Hans Moravec. The documentary came out in 1998, and then a new version was made in 2006. This is how the film-makers themselves describe what the movie is about:

“The accelerating advances in genetics, brain research, artificial intelligence, bionics and nanotechnology seem to converge to one goal: to overcome human limits and create higher forms of intelligent life and to create transhuman life.”

Continue reading “When will a computer surpass the human brain?” »

Mar 8, 2023

‘Upload your mind’ or alter genetics: Powerful billionaires are pouring money into life-extending technology — and they just might succeed

Posted by in categories: genetics, life extension, neuroscience

Reverse the aging process and live decades longer? Transfer your brain onto a database and achieve digital immortality? Humans one day may have such options.

Mar 8, 2023

CDR Dr. Jean-Paul Chretien — DARPA BTO — Regeneration, Resuscitation And Biothreat Countermeasures

Posted by in categories: biological, biotech/medical, genetics, health, military, policy, surveillance

Regeneration, Resuscitation & Biothreat Countermeasures — Commander Dr. Jean-Paul Chretien, MD, Ph.D., Program Manager, Biological Technology Office, DARPA


Commander Dr. Jean-Paul Chretien, MD, Ph.D. (https://www.darpa.mil/staff/cdr-jean-paul-chretien) is a Program Manager in the Biological Technology Office at DARPA, where his research interests include disease and injury prevention, operational medicine, and biothreat countermeasures. He is also responsible for running the DARPA Triage Challenge (https://triagechallenge.darpa.mil/).

Continue reading “CDR Dr. Jean-Paul Chretien — DARPA BTO — Regeneration, Resuscitation And Biothreat Countermeasures” »

Mar 7, 2023

Archaeologists dug up a cave in Spain. What they found plugs a gap in understanding ancient humans

Posted by in categories: biotech/medical, genetics

Europe was covered in thick ice sheets around the time of the last glacial maximum around 20,000 years ago, during which time sea levels were more than a hundred metres lower than today.

Shielding themselves from the frigid conditions in western Europe, cave-dwelling humans occupied rock shelters and caverns and in one site near Granada in Spain, archaeologists have unearthed remains providing the oldest human genome recorded in the region.

This 23,000-year-old genome from Cueva del Malalmuerzo is the oldest found in the Andalusian region and one of the oldest recorded. Researchers from the Max Planck Institute for Evolutionary Anthropology have connected these genetic remains to those of a 35,000-year-old Belgian specimen found in 2016.