Menu

Blog

Archive for the ‘genetics’ category: Page 100

Nov 25, 2022

AI tailors artificial DNA for future drug development

Posted by in categories: biological, biotech/medical, food, genetics, robotics/AI

With the help of an AI, researchers at Chalmers University of Technology, Sweden, have succeeded in designing synthetic DNA that controls the cells’ protein production. The technology can contribute to the development and production of vaccines, drugs for severe diseases, as well as alternative food proteins much faster and at significantly lower costs than today.

How genes are expressed is a process that is fundamental to the functionality of cells in all living organisms. Simply put, the in DNA is transcribed to the molecule messenger RNA (mRNA), which tells the cell’s factory which to produce and in which quantities.

Researchers have put a lot of effort into trying to control gene expression because, among other things, it can contribute to the development of protein-based drugs. A recent example is the mRNA vaccine against COVID-19, which instructed the body’s cells to produce the same protein found on the surface of the coronavirus.

Nov 25, 2022

New CRISPR gene-editing system can “drag-and-drop” DNA in bulk

Posted by in categories: bioengineering, biotech/medical, genetics

A new technique has been added to the CRISPR gene-editing toolbox. Known as PASTE, the system uses virus enzymes to “drag-and-drop” large sections of DNA into a genome, which could help treat a range of genetic diseases.

The CRISPR system originated in bacteria, which used it as a defense mechanism against viruses that prey on them. Essentially, if a bacterium survived a viral infection, it would use CRISPR enzymes to snip out a small segment of the virus DNA, and use that to remind itself how to fight off future infections of that virus.

Over the past few decades, scientists adapted this system into a powerful tool for genetic engineering. The CRISPR system consists of an enzyme, usually one called Cas9, which cuts DNA, and a short RNA sequence that guides the system to make this cut in the right section of the genome. This can be used to snip out problematic genes, such as those that cause disease, and can substitute them with other, more beneficial genes. The problem is that this process involves breaking both strands of DNA, which can be difficult for the cell to patch back up as intended, leading to unintended alterations and higher risks of cancer in edited cells.

Nov 25, 2022

A Bizarre Case of Hypertension Immunity

Posted by in categories: biotech/medical, genetics

Scientists in Berlin have been studying a strange hereditary condition that causes half the people in certain families to have shockingly short fingers and abnormally high blood pressure for decades. If untreated, affected individuals often die of a stroke at the age of 50. Researchers at the Max Delbrück Center (MDC) in Berlin discovered the origin of the condition in 2015 and were able to verify it five years later using animal models: a mutation in the phosphodiesterase 3A gene (PDE3A) causes its encoded enzyme to become overactive, altering bone growth and causing blood vessel hyperplasia, resulting in high blood pressure.

“High blood pressure almost always leads to the heart becoming weaker,” says Dr. Enno Klußmann, head of the Anchored Signaling Lab at the Max Delbrück Center and a scientist at the German Centre for Cardiovascular Research (DZHK). As it has to pump against a higher pressure, Klußmann explains, the organ tries to strengthen its left ventricle. “But ultimately, this results in the thickening of the heart muscle – known as cardiac hypertrophy – which can lead to heart failure greatly decreasing its pumping capacity.”

Nov 24, 2022

New CRISPR-based tool inserts large DNA sequences at desired sites in cells

Posted by in categories: biotech/medical, genetics

Building on the CRISPR gene-editing system, MIT researchers have designed a new tool that can snip out faulty genes and replace them with new ones, in a safer and more efficient way.

Using this system, the researchers showed that they could deliver as long as 36,000 DNA base pairs to several types of human cells, as well as to liver cells in mice. The new technique, known as PASTE, could hold promise for treating diseases that are caused by with a large number of mutations, such as cystic fibrosis.

“It’s a new genetic way of potentially targeting these really hard to treat diseases,” says Omar Abudayyeh, a McGovern Fellow at MIT’s McGovern Institute for Brain Research. “We wanted to work toward what was supposed to do at its original inception, which is to replace genes, not just correct individual mutations.”

Nov 24, 2022

Announcing the Science Eye

Posted by in categories: biotech/medical, cyborgs, genetics, science

An advanced optogenetic visual prosthesis for patients with serious blindness due to photoreceptor loss.

Nov 24, 2022

Will pigs solve the organ crisis? The future of animal-to-human transplants

Posted by in categories: bioengineering, biotech/medical, genetics

Unnecessary playing with nature.


In January, Bennett’s doctors offered him the chance to receive a heart from a pig. He took it. “I know it’s a shot in the dark, but it’s my last choice,” he said in a press release from the University of Maryland Medical Center in Baltimore, where he was being treated. On 7 January, doctors transplanted the heart, which had been genetically modified so that the human body would tolerate it.

Bennett survived for eight weeks with his new heart before his body shut down. After his death, the research team learnt that the transplanted organ was infected with a pig herpesvirus that had not been detected by tests1.

Continue reading “Will pigs solve the organ crisis? The future of animal-to-human transplants” »

Nov 23, 2022

The world’s largest Alzheimer’s study has made a gene discovery that could lead to treatments

Posted by in categories: biotech/medical, genetics, neuroscience

The discovery could lead to potential future targeted therapies and treatments for this brain disorder.

Researchers have found two novel genes that increase an individual’s risk of developing Alzheimer’s disease (AD). This disorder is the leading cause of dementia and has an estimated heritability —genetic factor causing variation in the population, or an inherited trait— of 70%.


Digicomphoto/iStock.

Continue reading “The world’s largest Alzheimer’s study has made a gene discovery that could lead to treatments” »

Nov 23, 2022

Researcher shows how a common fungus eliminates toxic mercury from soil and water

Posted by in categories: food, genetics, health, space

A University of Maryland researcher and colleagues found that the fungus Metarhizium robertsii removes mercury from the soil around plant roots, and from fresh and saltwater. The researchers also genetically engineered the fungus to amplify its mercury detoxifying effects.

Mercury pollution of soil and water is a worldwide threat to public health. This new work suggests Metarhizium could provide an inexpensive and efficient way to protect crops grown in polluted areas and remediate -laden waterways.

The study, which was conducted by UMD professor of entomology Raymond St. Leger and researchers in the laboratory of his former post-doctoral fellow, Weiguo Fang (now at Zhejiang University in Hangzhou, China), was published in Proceedings of the National Academy of Sciences (PNAS) on November 14, 2022.

Nov 23, 2022

New study shows repeated stress accelerates aging of the eye

Posted by in categories: biotech/medical, genetics, life extension

New research from the University of California, Irvine, suggests aging is an important component of retinal ganglion cell death in glaucoma, and that novel pathways can be targeted when designing new treatments for glaucoma patients.

The study was published today in Aging Cell. Along with her colleagues, Dorota Skowronska‐Krawczyk, Ph.D., assistant professor in the Departments of Physiology & Biophysics and Ophthalmology and the faculty of the Center for Translational Vision Research at the UCI School of Medicine, describes the transcriptional and happening in aging retina.

The team shows how stress, such as (IOP) elevation in the eye, causes to undergo epigenetic and transcriptional changes similar to natural aging. And, how in young retinal tissue, repetitive stress induces features of accelerated aging including the accelerated epigenetic age.

Nov 23, 2022

Genes for Breast Size Found

Posted by in category: genetics

Circa 2012


Researchers have identified seven genetic markers linked with a woman’s breast size, according to a new study.

While it’s was known that breast size is in part heritable, the study is the first to find specific genetic factors that are associated with differences in breast size, the researchers said.

Page 100 of 446First979899100101102103104Last