Menu

Blog

Archive for the ‘evolution’ category: Page 83

Jul 23, 2020

How does cooperation evolve?

Posted by in categories: chemistry, energy, evolution

In nature, organisms often support each other in order to gain an advantage. However, this kind of cooperation contradicts the theory of evolution proposed by Charles Darwin: Why would organisms invest valuable resources to help others? Instead, they should rather use them for themselves, in order to win the evolutionary competition with other species. A new study led by Prof. Dr. Christian Kost from the Department of Ecology at Osnabrueck University has now solved this puzzle. The results of the study were published in the scientific journal Current Biology. The research project was performed in collaboration with the Max Planck Institute for Chemical Ecology in Jena.

Interactions between two or more organisms, in which all partners involved gain an advantage, are ubiquitous in nature and have played a key role in the of life on Earth. For example, root bacteria fix nitrogen from the atmosphere, thus making it available to plants. In return, the plant supplies its root bacteria with nutritious sugars. However, it is nevertheless costly for both interaction partners to support each other. For example, the provision of sugar requires energy, which is then not available to the plant anymore. From this results the risk of cheating interaction partners that consume the sugar without providing nitrogen in return.

The research team led by Prof. Dr. Christian Kost used bacteria as a model system to study the evolution of mutual cooperation. At the beginning of the experiment, two bacterial strains could only grow when they provided each other with . Over the course of several generations, however, the initial exchange of metabolic byproducts developed into a real cooperation: both partners increased the production of the exchanged amino acids in order to benefit their respective partner. Even though the increased amino acid production enhanced growth when both partners were present, it was extremely costly when individual bacterial strains had to grow without their partner.

Jul 20, 2020

What You Need to Know About Mars

Posted by in categories: evolution, space

🔬 The search for ancient life 🔮 Planetary evolution 👹‍🚀 Preparing for future human exploration.

There are so many reasons to study the Red Planet.

Jul 13, 2020

Beneficial Mutations

Posted by in categories: biotech/medical, evolution, genetics

These non-random epigenetic changes imply that evolution has a “mind.” Creatures appear to have complex mechanisms to make epigenetic changes that allow them to adapt to future environmental challenges. But where did this forward-thinking design come from? Evolution is mindless; it cannot see the future. So how could it evolve mechanisms to prepare for the future?

But God does! God is omniscient (all-knowing), and He foreknew Adam and Eve would sin. He would judge that sin (Gen. 3) and the world would be cursed (Rom. 8:22). God knew that organisms would need the ability to adapt in a world that was no longer “very good.” God likely designed organisms with epigenetic mechanisms to allow them to change easily and quickly in relation to their environment. These types of changes are much more valuable than random mutation and natural selection because they can produce immediate benefits for offspring without harming the basic information in the actual sequence of DNA.

Although we often hear that “nothing in biology makes sense except in the light of evolution,” it should be said that “nothing in biology makes sense without the Creator God.” Epi genetics is an exciting field of science that displays the intelligence and providence of God to help organisms adapt and survive in a fallen world.

Jul 10, 2020

Researchers study if nerve cells evolved to talk to microbes

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Various diseases of the digestive tract, for example severe intestinal inflammation in humans, are closely linked to disturbances in the natural mobility of the intestine. What role the microbiome—i.e. the natural microbial community colonizing the digestive tract—plays in these rhythmic contractions of the intestine, also known as peristalsis, is currently the subject of intensive research. It is particularly unclear how the contractions are controlled and how the cells of the nervous system, that act as pacemakers, function together with the microorganisms.

A research team from the Cell and Developmental Biology group at Kiel University has now succeeded in demonstrating for the first time, using the freshwater polyp Hydra as an example, that phylogenetically old neurons and bacteria actually communicate directly with each other. Surprisingly, they discovered that the are able to cross-talk with the microorganisms via immune receptors, i.e., to some extent with the mechanisms of the immune system.

On this basis, the scientists of the Collaborative Research Center (CRC) 1182 “Origin and Function of Metaorganisms” formulated the hypothesis that the has not only taken over sensory and motor functions from the onset of evolution, but is also responsible for communication with the microbes. The Kiel researchers around Professor Thomas Bosch published their results together with international colleagues today in the journal Proceedings of the National Academy of Sciences (PNAS).

Jul 10, 2020

Supergenes – Massive Blocks of Genes – May Help Fill Lingering Gaps in Darwin’s Theories of Evolution

Posted by in categories: evolution, habitats

Supergenes Play a Larger Role in Evolution Than Previously Thought

Massive blocks of genes—inherited together ‘plug and play’ style—may play a larger role in evolutionary adaption than previously thought, according to new research in Nature.

Biologists identified 37 of these so-called ‘supergenes’ in wild sunflower populations, and found they govern the modular transfer of a large range of traits important for adaptation to local habitats. Those include seed size, timing of flowering, as well as the ability to withstand environmental stresses such as drought or limited nutrient availability, among many others.

Jul 6, 2020

Im Jun-Jul 2020

Posted by in category: evolution

Discover the most radical ideas shaping human evolution!

Jul 2, 2020

There was a crooked man: Scoliosis and the deep history of the brain’s inner sanctum

Posted by in categories: biotech/medical, evolution, neuroscience

Lurking just beneath the surface of just about every common nursery rhyme is a complex record of times long gone. For example, the “crooked man” who “laid a crooked sixpence upon a crooked style” was none other than the great 17th-century Scot General Sir Alexander Leslie. The crooked stile was the uneasy border between Scotland and England established by the controversial covenant he signed. Quite similarly, many enigmatic structures that permanently persist or otherwise transiently appear and resorb in the development of the nervous systems of many creatures also encode a rich evolutionary past.

One such functioning relic is Reissner’s fiber, a glycoprotein sheet secreted by the subcommissural organ (SCO) that inexorably treadmills down the central canal of the spinal cord. Although the SCO was one of the first structures of the mammalian brain to differentiate, in humans, it begins regressing around age three or four and typically becomes vestigial by adulthood. The main component of Reissner’s fiber is a giant 5000-amino-acid vertebrate molecule called SCO-spondin. This protein contains axonal pathfinding domains critical to development of the posterior commissure, a transhemispheric highway that bears axons controlling the pupillary light reflex.

The other product of the SCO is a thyroid-hormone-transporting protein called transthyretin. Much like all the organified metals fixed by life, iodine has a unique story to tell in the evolution of the body plan. Recently, an intriguing connection between Reissner’s fiber and development of the spine that houses it has been discovered in the model organism, zebrafish. These fish, as recently observed for the serotonergic control of neurogenesis, have proven to be an exemplary model for studying all things neural. In the latest issue of Current Biology, author Nathalie Jurisch-Yaksi reviews a remarkable confluence of ideas that establish an indisputable role for Reissner’s membrane building a straight and strong spine.

Jun 29, 2020

Nanotechnology applied to medicine: The first liquid retina prosthesis

Posted by in categories: biotech/medical, cyborgs, evolution, life extension, nanotechnology

Research at IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) has led to the revolutionary development of an artificial liquid retinal prosthesis to counteract the effects of diseases such as retinitis pigmentosa and age-related macular degeneration that cause the progressive degeneration of photoreceptors of the retina, resulting in blindness. The study has been published in Nature Nanotechnology.

The study represents the state of the art in retinal prosthetics and is an evolution of the planar artificial retinal model developed by the same team in 2017 and based on organic semiconductor materials (Nature Materials 2017, 16: 681–689).

The ‘second generation’ artificial retina is biomimetic, offers and consists of an aqueous component in which photoactive polymeric nanoparticles (whose size is 350 nanometres, thus about 1/100 of the diameter of a hair) are suspended, and will replace damaged photoreceptors.

Jun 27, 2020

Mapping the Early Universe with NASA’s Webb Telescope

Posted by in categories: cosmology, evolution, mapping

Although many other observatories, including NASA’s Hubble Space Telescope, have previously created “deep fields” by staring at small areas of the sky for significant chunks of time, the Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven L. Finkelstein of the University of Texas at Austin, will be one of the first for Webb. He and his research team will spend just over 60 hours pointing the telescope at a slice of the sky known as the Extended Groth Strip, which was observed as part of Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey or CANDELS.

“With Webb, we want to do the first reconnaissance for galaxies even closer to the big bang,” Finkelstein said. “It is absolutely not possible to do this research with any other telescope. Webb is able to do remarkable things at wavelengths that have been difficult to observe in the past, on the ground or in space.”

Mark Dickinson of the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory in Arizona, and one of the CEERS Survey co-investigators, gives a nod to Hubble while also looking forward to Webb’s observations. “Surveys like the Hubble Deep Field have allowed us to map the history of cosmic star formation in galaxies within a half a billion years of the big bang all the way to the present in surprising detail,” he said. “With CEERS, Webb will look even farther to add new data to those surveys.”

Jun 26, 2020

Podcasts to Listen To: Future Thinkers and the best futurist podcasts to listen to

Posted by in categories: evolution, neuroscience

Nobody can predict what will happen in the future, but there are a few who are trying to help make sense of what is coming. Known as futurists, these “future” experts study the future and make predictions based on current trends. Here are a few futurist podcasts to help you make sense of where we are headed.

Future Thinkers

Created by Mike Gilliland and Euvie Ivanova, this podcast is focused on the evolution of society, technology and consciousness. Episodes include interviews with company founders, psychologists and philosophers. Recent episodes include “James Ehrlich — Regenerative Villages,” “Donald Hoffman — Do We See Reality As It Is?” and “Jamie Wheal Q&A.”

Page 83 of 128First8081828384858687Last