Menu

Blog

Archive for the ‘engineering’ category: Page 188

Mar 31, 2016

An Update on fast Transit Routing with Transfer Patterns | Google Research Blog

Posted by in categories: automation, big data, business, complex systems, computing, economics, engineering, environmental, transportation

image02

“What is the best way to get from A to B by public transit? Google Maps is answering such queries for over 20,000 cities and towns in over 70 countries around the world, including large metro areas like New York, São Paulo or Moscow, and some complete countries, such as Japan or Great Britain.”

Read more

Mar 31, 2016

Microneedle Patch Delivers Localized Cancer Immunotherapy to Melanoma

Posted by in categories: biotech/medical, engineering

Biomedical engineering researchers at North Carolina State University and the University of North Carolina at Chapel Hill have developed a technique that uses a patch embedded with microneedles to deliver cancer immunotherapy treatment directly to the site of melanoma skin cancer. In animal studies, the technique more effectively targeted melanoma than other immunotherapy treatments.

According to the CDC, more than 67,000 people in the United States were diagnosed with melanoma in 2012 alone – the most recent year for which data are available. If caught early, melanoma patients have a 5-year survival rate of more than 98 percent, according to the National Cancer Institute. That number dips to 16.6 percent if the cancer has metastasized before diagnosis and treatment. Melanoma treatments range from surgery to chemotherapy and radiation therapy. A promising new field of cancer treatment is cancer immunotherapy, which helps the body’s own immune system fight off cancer.

Read more

Mar 30, 2016

Second quantum revolution a reality with chip-based atomic physics

Posted by in categories: computing, engineering, particle physics, quantum physics

A University of Oklahoma-led team of physicists believes chip-based atomic physics holds promise to make the second quantum revolution—the engineering of quantum matter with arbitrary precision—a reality. With recent technological advances in fabrication and trapping, hybrid quantum systems are emerging as ideal platforms for a diverse range of studies in quantum control, quantum simulation and computing.

James P. Shaffer, professor in the Homer L. Dodge Department of Physics and Astronomy, OU College of Arts and Sciences; Jon Sedlacek, OU graduate student; and a team from the University of Nevada, Western Washington University, The United States Naval Academy, Sandia National Laboratories and Harvard-Smithsonian Center for Astrophysics, have published research important for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom– interactions, as well as applications for electrons bound to a 2D surface.

“A convenient surface for application in hybrid quantum systems is quartz because of its extensive use in the semiconductor and optics industries,” Sedlacek said. “The surface has been the subject of recent interest as a result of it stability and low surface energy. Mitigating electric fields near ‘trapping’ surfaces is the holy grail for realizing hybrid ,” added Hossein Sadeghpour, director of the Institute for Theoretical Atomic Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics.

Continue reading “Second quantum revolution a reality with chip-based atomic physics” »

Mar 28, 2016

Research on largest network of cortical neurons to date

Posted by in categories: biotech/medical, electronics, engineering, neuroscience

Awesome!


Even the simplest networks of neurons in the brain are composed of millions of connections, and examining these vast networks is critical to understanding how the brain works. An international team of researchers, led by R. Clay Reid, Wei Chung Allen Lee and Vincent Bonin from the Allen Institute for Brain Science, Harvard Medical School and Neuro-Electronics Research Flanders (NERF), respectively, has published the largest network to date of connections between neurons in the cortex, where high-level processing occurs, and have revealed several crucial elements of how networks in the brain are organized. The results are published in the journal Nature.

“This is a culmination of a research program that began almost ten years ago. Brain networks are too large and complex to understand piecemeal, so we used high-throughput techniques to collect huge data sets of brain activity and brain wiring,” says R. Clay Reid, M.D., Ph.D., Senior Investigator at the Allen Institute for Brain Science. “But we are finding that the effort is absolutely worthwhile and that we are learning a tremendous amount about the structure of networks in the brain, and ultimately how the brain’s structure is linked to its function.”

Continue reading “Research on largest network of cortical neurons to date” »

Mar 17, 2016

Remarkable nanowires could let computers of the future grow their own chips

Posted by in categories: computing, engineering, materials, mobile phones, nanotechnology, particle physics, robotics/AI

Now, we’re hitting Terminator mode with this.


If you’re worried that artificial intelligence will take over the world now that computers are powerful enough to outsmart humans at incredibly complex games, then you’re not going to like the idea that someday computers will be able to simply build their own chips without any help from humans. That’s not the case just yet, but researchers did come up with a way to grow metal wires at a molecular level.

At the same time, this is a remarkable innovation that paves the way for a future where computers are able to create high-end chip solutions just as a plant would grow leaves, rather than having humans develop computer chips using complicated nanoengineering techniques.

Continue reading “Remarkable nanowires could let computers of the future grow their own chips” »

Mar 16, 2016

DOE’s ARPA-E TERRA projects seek to accelerate sustainable energy crop development

Posted by in categories: energy, engineering, food, genetics, information science, robotics/AI, sustainability, transportation

ARPA-E creating sustainable energy crops for the production of renewable transportation fuels from biomass.


In Washington, the DOE’s ARPA-E TERRA projects seek to accelerate the development of sustainable energy crops for the production of renewable transportation fuels from biomass. To accomplish this, the projects uniquely integrate agriculture, information technology, and engineering communities to design and apply new tools for the development of improved varieties of energy sorghum. The TERRA project teams will create novel platforms to enhance methods for crop phenotyping (identifying and measuring the physical characteristics of plants) which are currently time-intensive and imprecise.

The new approaches will include automated methods for observing and recording characteristics of plants and advanced algorithms for analyzing data and predicting plant growth potential. The projects will also produce a large public database of sorghum genotypes, enabling the greater community of plant physiologists,

Bioinformaticians and geneticists to generate breakthroughs beyond TERRA. These innovations will accelerate the annual yield gains of traditional plant breeding and support the discovery of new crop traits that improve water productivity and nutrient use efficiency needed to improve the sustainability of bioenergy crops.

Continue reading “DOE’s ARPA-E TERRA projects seek to accelerate sustainable energy crop development” »

Mar 14, 2016

Researchers create new triple helix structure for DNA — Many potential uses in chemistry, tissue engineering, etc

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

Could a cheap molecule used to disinfect swimming pools provide the key to creating a new form of DNA nanomaterials?

Cyanuric acid is commonly used to stabilize chlorine in backyard pools; it binds to free chlorine and releases it slowly in the water. But researchers at McGill University have now discovered that this same small, inexpensive molecule can also be used to coax DNA into forming a brand new structure: instead of forming the familiar double helix, DNA’s nucleobases — which normally form rungs in the DNA ladder — associate with cyanuric acid molecules to form a triple helix.

Read More ON Mcgill University

Continue reading “Researchers create new triple helix structure for DNA — Many potential uses in chemistry, tissue engineering, etc” »

Mar 11, 2016

Can we build quantum-resistant encryption?

Posted by in categories: computing, encryption, engineering, finance, government, internet, quantum physics

I do believe we’re within a 7 to 8 yr window at this point with Quantum hitting the broader main stream computing infrastructure. However, we have banks in Europe that have been using the technology for network communications, Los Alamos Labs experimenting since late 2011 with Quantum Internet, now China is launching their own Quantum Satellite for wireless communications; so I do suggest a strategy needs to be developed over the next 2 to 3 yrs for government & industry around how to manage & plan for deployment of Quantum especially with China & Russia’s interest.


New research demonstrating that quantum computing is now just an engineering challenge moves the possibility of encryption-cracking machines to the front burner.

Read more

Mar 10, 2016

IARPA awards $18.7 million contract to Allen Institute to reconstruct neuronal connections

Posted by in categories: biotech/medical, engineering, information science, neuroscience, robotics/AI

Allen Institute working with Baylor on reconstructing neuronal connections.


The Intelligence Advanced Research Projects Activity (IARPA) has awarded an $18.7 million contract to the Allen Institute for Brain Science, as part of a larger project with Baylor College of Medicine and Princeton University, to create the largest ever roadmap to understand how the function of networks in the brain’s cortex relates to the underlying connections of its individual neurons.

The project is part of the Machine Intelligence from Cortical Networks (MICrONS) program, which seeks to revolutionize machine learning by reverse-engineering the algorithms of the brain.

Continue reading “IARPA awards $18.7 million contract to Allen Institute to reconstruct neuronal connections” »

Mar 8, 2016

Terraforming Mars: Turning the Red Planet Green

Posted by in categories: engineering, environmental, space

Here’s how scientists think we could turn Mars into Earth 2.0…

Read more