Artificial intelligence researchers at Google DeepMind are celebrating after reaching a major breakthrough that’s been pursued for more than 20 years: The team taught a computer program the ancient game of Go, which has long been considered the most challenging game for an an artificial intelligence to learn. Not only can the team’s program play Go, it’s actually very good at it.
The computer program AlphaGo was developed by Google DeepMind specifically with the task of beating professional human players in the ancient game. The group challenged the three-time European Go Champion Fan Hui to a series of matches, and for the first time ever, the software was able to beat a professional player in all five of the games played on a full-sized board. The team announced the breakthrough in a Nature article published today.
The leading atheist said that teaching a child a religion without questioning its merits is as bad as ‘abuse’ at the Chipping Norton Literary Festival yesterday.
Kudos to Manpower’s CEO Jonas Prising — with the possibility on the horizon of a world wide loss of 5 million jobs; we need to make sure we a structure in place to absorb that hit with needs to include education & retraining and a financial support structure to help those laid off and their immediate family members (namely children). And, the earlier we can train folks; the less costly it will be for governments and countries in the long run.
ManpowerJonas Prising, CEO and Executive Chairman of Manpower, spoke to Business Insider in Davos for the WEF meeting.
Over 2,500 of the world’s most powerful people have talked about the risks and opportunities surrounding “The Fourth Industrial Revolution” this week at the World Economic Forum in Davos, Switzerland.
“The money pouring into ed tech tells a different story, however. Despite the volume of novel products aimed at schools, the biggest investments are largely going to start-ups focused on higher education or job-related skills — businesses that feed a market of colleges, companies and consumers willing to spend to promote career advancement.”
Welcome to a new age of AI Healthcare Although we’re in the early release/ deployment stages of the AI doctor experience and compound that with a 10 year evolution of technology and health science being intertwined together as one/ Singularity; could we see a day soon when technology and engineering graduates having their own education include medical school? Definitely could be as we move more into a singularity future and as the many of the routine patient services evolve to AI and Robotics.
Granted, companies hire today doctors and nurses, etc. to consult their engineers and techies; however, Singularity and as we evolve to it, will require engineers and techies to have their own level of a in-depth medical background/ knowledge due to it’s complexity. Now, imagine the change and transformation that will be required across our educational system as well in order for us to be prepared for this new future.
London-based digital healthcare startup, Babylon is an artificially intelligent ‘doctor’ that aims to prevent illnesses before they occur. To do this, the program tracks your daily habits, diagnosis illness based on symptoms and integrating data about heart rate, diet and medical records.
Narrated by Gabriel Byrne, Flight from Death, is a seven-time Best Documentary award-winning film which uncovers death anxiety as a possible root cause of many of our behaviors on a psychological, spiritual, and cultural level.
The real question is: “what is the healing time in space v. earth? What is the risk of infection on earth v. space when surgery is performed in space?” If stats show patient survival, healing, and low to no infection rates in space v. earth; we could see a time when hospital colonies in space exist to handle initially complicated and high risks surgeries by robots v. earth.
NASA is grooming its robonauts to eventually perform surgery on people living in remote areas, like space. Lisa D’Souza has more on the future droid docs.
DNA is similar to a hard drive or storage device, in that contains the memory of each cell of every living, and has the instructions on how to make that cell. DNA is four molecules combined in any order to make a chain of one larger molecule. And if you can read that chain of four molecules, then you have a sequence of characters, like a digital code. Over the years the price of sequencing a human genome has dropped significantly, much to the delight of scientists. And since DNA is a sequence of four letters, and if we can manipulate DNA, we could insert a message and use DNA as the storage device.
At this point in time, we are at the height of the information age. And computers have had an enormous impact on all of our lives. Any information is able to be represented as a collection of bits. And with Moore’s law, which states that computing power doubles every 18 months, our ability to manipulate and store these bits has continued to grow and grow. Moore’s law has been driven by scientists being able to make transistors and integrated circuits continuously smaller and smaller, but there eventually comes a point we reach in which these transistors and integrated circuits cannot be made any smaller than they already are, since some are already at the size of a single atom. This inevitably leads us into the quantum world. Quantum mechanics has rules which are, in many ways, hard for us to truly comprehend, yet are nevertheless tested. Quantum computing looks to make use of these strange rules of quantum physics, and process information in a totally different way. Quantum computing looks to replace the classical bits which are either a 0 or a 1, with quantum bits, or qubits, which can be both a 0 and a 1 at the same time. This ability to be two different things at the same time is referred to as a superposition. 200 qubits hold more bits of information than there are particles in the universe. A useful quantum computer will require thousands or even millions of physical qubits. Anything such as an atom can serve as a quantum bit for making a quantum computer, then you can use a superconducting circuit to build two artificial atoms. So at this point in time we have a few working quantum transistors, but scientists are working on developing the quantum integrated circuit. Quantum error correction is the biggest problem encountered in development of the quantum computer. Quantum computer science is a field that right now is in its very early stages, since scientists have yet been able to develop any quantum hardware.
Inhuman travels the globe to unveil for the first time how breakthrough advances in science, technology and philosophy—including cybernetics, bioengineering, nanotechnology, machine intelligence and synthetic biology are poised to create mind-boggling game changes to everything we have known until now about Homo sapiens.