Menu

Blog

Archive for the ‘cosmology’ category: Page 58

May 16, 2024

Black holes observed colliding when universe was only 740m years old

Posted by in category: cosmology

Prof Roberto Maiolino, an astrophysicist at the University of Cambridge, and a member of team behind the observations, said: “One problem that we have in cosmology is explaining how these black holes manage to grow so big. In the past we have always talked about gobbling matter very quickly or being born big. Another possibility is that they grow very fast by merging.”

Until now it was not clear whether the merging of galaxies – which is known to have happened – would also result in the black holes at the centres morphing into a single cosmic sinkhole. Recent models have suggested that one of them would be kicked out into space to become a “wandering black hole”

The latest observations use the Webb telescope’s ability to get to the far reaches of the cosmos and so have provided the first glimpse of galactic mergers in the distant past.

May 16, 2024

ONe Nova To Rule Them All: Rare Stellar Explosions Shape the Building Blocks of Life

Posted by in category: cosmology

New research identifies ONe novae as key sources of phosphorus, essential for life, with peak production aligning with the early Solar System.

Astronomers have proposed a new theory to explain the origin of phosphorus, one of the elements important for life on Earth. The theory suggests a type of stellar explosion known as ONe novae as a major source of phosphorus.

After the Big Bang, almost all of the matter in the Universe was comprised of hydrogen. Other elements were formed later, by nuclear reactions inside stars or when stars exploded in events known as novae or supernovae. But there are a variety of stars and a variety of ways they can explode. Astronomers are still trying to figure out which processes were important in creating the abundances of elements we see in the Universe.

May 16, 2024

Spooky states and figure eights: Stepping into the quantum computing ‘ring’

Posted by in categories: computing, cosmology, quantum physics

Deep in outer space, invisible hands mold the universe. One is dark matter, an unseen substance thought to bind distant galaxies. The other is dark energy, a force believed to push stellar structures apart with gravity-defying strength.

May 16, 2024

Astronomers say we may live at the center of a cosmic void 2 billion light-years wide that defies the laws of cosmology

Posted by in category: cosmology

If this gigantic cosmic void does exist, it could help astronomers solve one of the greatest mysteries of our universe.

May 15, 2024

The Dark Universe: Why we’re about to solve the biggest mystery in science

Posted by in categories: cosmology, science

Tiny, fuzzy blobs. I’ve spent a lot of time in the last few years looking at images of tiny, fuzzy blobs. They’re only ever a few pixels wide, like smudges on a photo, but they could be the key that unlocks the mystery of dark matter.

The blobs are galaxies: swirling pools of stars and planets suspended in space, millions of light-years away from Earth. The images were collected by an advanced camera with a 1m (3.3ft) lens mounted on the giant Victor M Blanco Telescope, 2,200m (7,200ft) up in the mountains of the Coquimbo Region of Chile.

May 15, 2024

Dark matter: our new experiment aims to turn the ghostly substance into actual light

Posted by in category: cosmology

Andrea Gallo Rosso, Stockholm University A ghost is haunting our universe. This has been known in astronomy and cosmology for decades. Observations suggest that about 85% of all the matter in the universe is mysterious and invisible. These two qualities are reflected in its name: dark matter. Several experiments have aimed to unveil what it’s made of, but despite decades of searching, scientists have come up short. Now our new experiment, under construction at Yale University in the US, is offering a new tactic.

May 15, 2024

How Does Multiverse Theory Relate to Time Travel?

Posted by in categories: cosmology, physics, time travel

The theoretical physics and paradoxes of time travel often brush up against multiverse theory and the idea of alternate universes.

May 15, 2024

Neutron-rich nuclei reveal how heavy elements form

Posted by in categories: cosmology, nuclear energy, physics

Models for how heavy elements are produced within stars have become more accurate thanks to measurements by RIKEN nuclear physicists of the probabilities that 20 neutron-rich nuclei will shed neutrons.

Stars generate energy by fusing the of light elements—first hydrogen nuclei and then progressively heavier nuclei, as the hydrogen and other lighter elements are sequentially consumed. But this process can only produce the first 26 elements up to iron.

Another process, known as rapid neutron capture, is thought to produce nuclei that are heavier than iron. As its name suggests, this process involves nuclei becoming larger by rapidly snatching up stray neutrons. It requires extremely high densities of neutrons and is thus thought to occur mainly during events such as mergers of neutron and supernova explosions.

May 15, 2024

Ancient stars could make elements with atomic masses greater than 260

Posted by in categories: cosmology, particle physics

The first stars of the universe were monstrous beasts. Comprised only of hydrogen and helium, they could be 300 times more massive than the sun. Within them, the first of the heavier elements were formed, then cast off into the cosmos at the end of their short lives. They were the seeds of all the stars and planets we see today. A new study published in Science suggests these ancient progenitors created more than just the natural elements.

Except for , , and a few traces of other light elements, all of the atoms we see around us were created through astrophysical processes, such as supernovae, collisions of neutron , and high-energy particle collisions. Together they created heavier elements up to Uranium-238, which is the heaviest naturally occurring element. Uranium is formed in supernova and neutron star collisions through what is known as the r-process, where neutrons are rapidly captured by atomic nuclei to become a heavier element. The r-process is complex, and there is still much we don’t understand about just how it occurs, or what its upper mass-limit might be. This new study, however, suggests that the r-process in the very first stars could have produced much heavier elements with atomic masses greater than 260.

The team looked at 42 stars in the Milky Way for which the elemental composition is well understood. Rather than simply looking for the presence of heavier elements, they looked at the relative abundances of elements across all the stars. They found that the abundance of some elements such as silver and rhodium doesn’t agree with the predicted abundance from known r-process nucleosynthesis. The data suggests that these elements are the decay remnants from much heavier nuclei of more than 260 atomic mass units.

May 15, 2024

Tomato Genetics: A Unexpected Journey Into a “Parallel Universe”

Posted by in categories: cosmology, genetics

In a new study recently published by Science Advances, Michigan State University researchers reveal an unexpected genetic revelation about the sugars found in “tomato tar,” shedding light on plant defense mechanisms and their potential applications in pest control.

Tomato tar, a familiar nuisance of avid gardeners, is the sticky, gold-black substance that clings to hands after touching the plant. It turns out that the characteristic stickiness of the substance serves an important purpose. It’s made of a type of sugar called acylsugar that acts as a natural flypaper for would-be pests. “Plants have evolved to make so many amazing poisons and other biologically active compounds,” said Michigan State researcher Robert Last, leader of the study. The Last lab specializes in acylsugars and the tiny, hair-like structures where they’re produced and stored, known as trichomes.

In a surprising discovery, researchers have found acylsugars, once thought to be found exclusively in trichomes, in tomato roots as well. This finding is a genetic enigma that raises as many questions as it does insights.

Page 58 of 427First5556575859606162Last