Menu

Blog

Archive for the ‘cosmology’ category: Page 11

Nov 9, 2024

Betelgeuse’s Secret Partner Betelbuddy Could Change Supernova Predictions

Posted by in category: cosmology

Scientists are rethinking the timing of Betelgeuse’s supernova, as new research suggests the star may have a hidden companion, known as Betelbuddy. This companion could be responsible for Betelgeuse’s unusual brightening and dimming patterns.

The discovery opens up new possibilities, including the idea that Betelbuddy might be a young star or even something more exotic, like a neutron star. Researchers are working to confirm Betelbuddy’s existence, which could dramatically change what we know about Betelgeuse and its eventual explosion.

Betelgeuse and Betelbuddy.

Nov 9, 2024

An ‘ultramassive’ Black Hole Has Been Discovered That’s 33 Billion Times The Mass Of The Sun

Posted by in category: cosmology

An ultramassive black hole is a black hole that has a mass of more than 10 billion times the mass of the sun. Black holes are regions of space where gravity is so strong that nothing, not even light, can escape. They are usually formed when massive stars collapse at the end of their life cycle.

Ultramassive black holes are rare and elusive, and their origins are unclear. Some scientists believe they were formed from the extreme merger of massive galaxies billions of years ago when the universe was still young.

Nov 9, 2024

James Webb Telescope Just Spotted 10 Galaxies That Might Be Older Than The Universe

Posted by in category: cosmology

The James Webb Space Telescope has just provided astronomers with the data that could change everything that we thought we knew about the cosmos. In a bizarre twist of fate, JWST observations indicate that ten extremely ancient galaxies exist in the universe, far older than the age of the universe itself. This extraordinary finding has excited much of the scientific world and debate, as scientists deal with what this might tell us about time, space, and the foundations of our understanding of cosmology.

Nov 9, 2024

Black hole study challenges Kerr solution assumptions

Posted by in category: cosmology

Black holes continue to captivate scientists: they are purely gravitational objects, remarkably simple, yet capable of hiding mysteries that challenge our understanding of natural laws. Most observations thus far have focused on their external characteristics and surrounding environment, leaving their internal nature largely unexplored.

Nov 9, 2024

Forget Black Holes—White Holes Would Break Your Puny Brain

Posted by in categories: cosmology, evolution, information science, mathematics, neuroscience, physics

White holes, the theoretical opposites of black holes, could expel matter instead of absorbing it. Unlike black holes, whose event horizon traps everything, white holes would prevent anything from entering. While no white holes have been observed, they remain an intriguing mathematical possibility. Some astrophysicists have speculated that gamma ray bursts could be linked to white holes, and even the Big Bang might be explained by a massive white hole. Although the second law of thermodynamics presents a challenge, studying these singularities could revolutionize our understanding of space-time and cosmic evolution.

After reading the article, Harry gained more than 724 upvotes with this comment: “It amazes me how Einstein’s theory and equations branched off into so many other theoretical phenomena. Legend legacy.”

Black holes may well be the most intriguing enigmas in the Universe. Believed to be the collapsed remnants of dead stars, these objects are renowned for one characteristic in particular – anything that goes in never comes out.

Nov 9, 2024

Astronomers Find The Largest Black Hole In The Milky Way Just 2,000 Light-years From Earth

Posted by in category: cosmology

Gaia BH3, a dormant black hole, quietly lurks 1,926 light-years away, nearly 33 times the Sun’s mass, making it one of the Milky Way’s largest stellar black holes.

Astronomers recently made a groundbreaking discovery: a dormant black hole named Gaia BH3, residing about 1,926 light-years away in the Milky Way’s Aquila constellation. Known as a “sleeping giant,” Gaia BH3 is approximately 33 times the Sun’s mass, making it the largest stellar black hole known in our galaxy. This black hole is only the second nearest to Earth, with Gaia BH1 slightly closer at around 1,500 light-years away.

The find was unintentional. Researchers were sifting through data from the European Space Agency’s Gaia space telescope, anticipating an upcoming data release when they noticed an unusual wobbling motion in a nearby star. This disturbance revealed the presence of Gaia BH3, whose immense gravitational force was causing a nearby giant star to orbit around it. This wobble marked the third dormant black hole identified by Gaia, a significant milestone in astronomical research.

Nov 9, 2024

Searching for Axions in Polarized Gas

Posted by in categories: cosmology, mathematics, particle physics, quantum physics

The standard model of fundamental particles and interactions has now been in place for about a half-century. It has successfully passed experimental test after experimental test at particle accelerators. However, many of the model’s features are poorly understood, and it is now clear that standard-model particles only compose about 5% of the observed energy density of the Universe. This situation naturally encourages researchers to look for new particles and interactions that fall outside this model. One way to perform this search is to prepare a gas of polarized atoms and to look for changes in this polarization that might come from new physics. Haowen Su from the University of Science and Technology of China and colleagues have used two separated samples of polarized xenon gas to probe spin-dependent interactions [1] (Fig. 1). The results place constraints on axions—a candidate for dark matter—in a theoretically favored mass range called the axion window.

Searches for new spin-dependent interactions have exploded over the past decade. Special relativity and quantum mechanics tightly constrain the mathematical form for such interactions, with the main adjustable parameters being the coupling strength and the spatial range. Since the form of these interactions is generic across many models, it is possible to conduct experimental searches for new interaction signatures, even in the absence of a specific theory for beyond-standard-model physics.

Nov 9, 2024

Improving detector sensitivity to neutrinos and dark matter

Posted by in categories: cosmology, particle physics

Fine tuning an experimental setup improved a detector’s sensitivity to neutrinos and perhaps eventually dark matter—two difficult-to-measure forms of matter which hold great importance for understanding particle physics and experimental cosmology. The University-of-Michigan-led study is published in Physical Review D.

Nov 9, 2024

‘Giant Arc’ Stretching 3.3 Billion Light-years Across The Cosmos Shouldn’t Exist

Posted by in categories: cosmology, mapping

A newly discovered crescent of galaxies spanning 3.3 billion light-years is one of the world’s largest known structures, challenging some of astronomers’ most fundamental assumptions about the universe.

The epic arrangement known as the Giant Arc is made up of galaxies, galaxy clusters, and a lot of gas and dust. It is located 9.2 billion light-years away and stretches across roughly a 15th of the observable universe.

Its discovery was “serendipitous,” according to Alexia Lopez, a doctoral candidate in cosmology at the University of Central Lancashire (UCLan) in the United Kingdom. Lopez was creating maps of things in the night sky using light from approximately 120,000 quasars, which are distant brilliant cores of galaxies where supermassive black holes consume material and produce energy.

Nov 9, 2024

Observations from JWST and Chandra reveal a low-mass supermassive black hole that appears to be consuming matter at over 40 times the theoretical limit

Posted by in categories: cosmology, evolution

Using data from NASA’s JWST and Chandra X-ray Observatory, a team of U.S. National Science Foundation NOIRLab astronomers have discovered a supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang that is consuming matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s ‘feast’ could help astronomers explain how supermassive black holes grew so quickly in the early Universe.

Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the Universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate, seen just 1.5 billion years after the Big Bang, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early Universe.

LID-568 was discovered by a cross-institutional team of astronomers led by International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh. They used the James Webb Space Telescope (JWST) to observe a sample of galaxies from the Chandra X-ray Observatory’s COSMOS legacy survey. This population of galaxies is very bright in the X-ray part of the spectrum, but are invisible in the optical and near-infrared. JWST’s unique infrared sensitivity allows it to detect these faint counterpart emissions.

Page 11 of 421First89101112131415Last