Menu

Blog

Archive for the ‘computing’ category: Page 832

Nov 23, 2015

No lens? No problem for FlatCam

Posted by in categories: computing, electronics, information science

How thin can a camera be? Very, say Rice University researchers who have developed patented prototypes of their technological breakthrough.

FlatCam, invented by the Rice labs of electrical and computer engineers Richard Baraniuk and Ashok Veeraraghavan, is little more than a thin with a mask that replaces lenses in a traditional camera.

Making it practical are the sophisticated computer algorithms that process what the sensor detects and converts the sensor measurements into images and videos.

Read more

Nov 20, 2015

There Is Growing Evidence that Our Universe Is a Giant Hologram

Posted by in categories: computing, cosmology, information science, quantum physics

Old post,but interesting…


If the holographic principle does indeed describe our universe, it could help resolve many inconsistencies between relativistic physics and quantum physics, including the black hole information paradox. It would also offer researchers a way to solve some very tough quantum problems using relatively simple gravitational equations. But before we can be sure that we’re living in the Matrix, there’s still a lot of work to be done.

“We did this calculation using 3D gravitational theory and 2D quantum field theory, but the universe actually has three spatial dimensions plus time,” Grumiller said. “A next step is to generalize these considerations to include one higher dimension. There are also many other quantities that should correspond between gravitational theory and quantum field theory, and examining these correspondences is ongoing work.”

Continue reading “There Is Growing Evidence that Our Universe Is a Giant Hologram” »

Nov 20, 2015

Scientists Crack the Code to Protein Self-Assembly

Posted by in categories: biotech/medical, computing, genetics

New findings out of Duke University will allow medical researchers to act like computer programmers except with genetic code rather than digital.

Read more

Nov 20, 2015

Quantum entanglement achieved at room temperature in semiconductor wafers

Posted by in categories: computing, electronics, particle physics, quantum physics

Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

Just one century ago, was at the center of intense theoretical debate, leaving scientists like Albert Einstein baffled. Today, however, entanglement is accepted as a fact of nature and is actively being explored as a resource for future technologies including quantum computers, quantum communication networks, and high-precision quantum sensors.

Entanglement is also one of nature’s most elusive phenomena. Producing entanglement between particles requires that they start out in a highly ordered state, which is disfavored by thermodynamics, the process that governs the interactions between heat and other forms of energy. This poses a particularly formidable challenge when trying to realize entanglement at the macroscopic scale, among huge numbers of particles.

Read more

Nov 20, 2015

Moore Foundation Gives Stanford $13.5 Million To Build “Accelerator on a Chip”

Posted by in categories: biotech/medical, computing, electronics, mobile phones, particle physics, security

Today’s particle accelerators are massive machines, but physicists have been working on shrinking them down to tabletop scales for years. The Gordon and Betty Moore Foundation just awarded a $13.5 million grant to Stanford University to develop a working “accelerator on a chip” the size of a shoebox over the next five years.

The international collaboration will build on prior experiments by physicists at SLAC/Stanford and Germany’s Friedrich-Alexander University in Erlangen-Nuremberg. If successful, the prototype could usher in a new generation of compact particle accelerators that could fit on a laboratory bench, with potential applications in medical therapies, x-ray imaging, and even security scanner technologies.

The idea is to “do for particle accelerators what the microchip industry did for computers,” SLAC National Accelerator Laboratory physicist Joel England told Gizmodo. Computers used to fill entire rooms back when they relied on bulky vacuum tube technology. The invention of the transistor and subsequent development of the microchip made it possible to shrink computers down to laptop and cell phone scales. England envisions a day when we might be able to build a handheld particle accelerator, although “there’d be radiation issues, so you probably wouldn’t want to hold one in your hand.”

Read more

Nov 20, 2015

The Original Star Trek is Still Driving Innovation at Apple and Google

Posted by in categories: computing, innovation

The Star Trek computer is close. Phasers can’t be far behind.

Read more

Nov 19, 2015

Laser ‘freeze ray’ could change cooling biology labs, computer processors

Posted by in category: computing

Laser cooling isn’t a new idea, but this is the first time it’s actually worked in real-world conditions.

Read more

Nov 19, 2015

Quantum Computers One Step Closer After Australian Breakthrough

Posted by in categories: computing, quantum physics

Engineers from the University of New South Wales, Australia, have made an important breakthrough that brings quantum computers one step closer to reality.

The team created a quantum version of a standard computer code within a silicon chip. The discovery shows that it is possible to construct realistic and reliable quantum computers.

Quantum computers have the potential to solve problems much more quickly than any computer that exists today, as they combine the rules of informatics to phenomena of quantum mechanics that are not observed in everyday life. Namely, the principle of superposition, popularized by Schrödinger’s cat being both alive and dead, and entanglement.

Read more

Nov 19, 2015

Los Alamos National Laboratory Orders a 1000+ Qubit D-Wave 2X Quantum Computer

Posted by in categories: computing, quantum physics, security

D-Wave Systems Inc., the world’s first quantum computing company, announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system. Los Alamos, a multidisciplinary research institution engaged in strategic science on behalf of national security, will lead a collaboration within the Department of Energy and with select university partners to explore the capabilities and applications of quantum annealing technology, consistent with the goals of the government-wide National Strategic Computing Initiative. The National Strategic Computing Initiative, created by executive order of President Barack Obama in late July, is intended “to maximize [the] benefits of high-performance computing (HPC) research, development, and deployment.”

“Eventually Moore’s Law (that predicted that the number of transistors on an integrated circuit would double every two years) will come to an end,” said John Sarrao, associate director for Theory, Simulation, and Computation at Los Alamos. “Dennard Scaling (that predicted that performance per watt of computing would grow exponentially at roughly the same rate) already has. Beyond these two observations lies the end of the current ‘conventional’ computing era, so new technologies and ideas are needed.”

“As conventional computers reach their limits in terms of scaling and performance per watt, we need to investigate new technologies to support our mission,” said Mark Anderson of the Laboratory’s Weapons Physics Directorate. “Researching and evaluating quantum annealing as the basis for new approaches to address intractable problems is an essential and powerful step, and will enable a new generation of forward thinkers to influence its evolution in a direction most beneficial to the nation.”

Read more

Nov 18, 2015

Nvidia unveils Pascal specifics — up to 16GB of VRAM, 1TB of bandwidth

Posted by in category: computing

Nvidia shared some more details on its upcoming Pascal architecture for 2016 — the new GPU will offer 1TB/s of memory bandwidth and up to 16GB of VRAM.

Read more